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Abstract

This dissertation is on the development and experimental demonstration of a new nonlinear
approach to developing control laws for the lateral-directional dynamics of aircraft at high
angles of attack using Forebody Tangential Blowing (FTB).

FTB is a pneumatic device that modifies the vortical flow over the forebody. The
modified vortical flow in turn creates roll and yaw moments for control. FTB has been
shown to be a very powerful means of generating forces and moments on aircraft operating
in flight regimes where the effectiveness of conventional aerodynamic surfaces is reduced
(e.g. post stall). Consequently, it provides a mechanism that could greatly expand the
flight envelope of future aircraft systems. Further, it offers a means of generating forces and
moments that could replace conventional surfaces in other regions of the operating envelop.

One major factor that currently limits the use of FTB is that it is a highly nonlinear
and uncertain effector. In particular, FTB can provide very powerful effects (e.g. forces
and moments) at low levels of blowing but the characteristic relating input to output is
highly nonlinear in this region. On the other hand, if higher levels of blowing are used, the
characteristics become well behaved. Hence, the trade-off between robustness and control
usage is particularly acute.

The goal of this thesis is to develop a technique that will yield for the first time robust
control at small levels of blowing thus enabling a new level of efficiency in the use of FTB
as a device for flight control at high angles of attack.

The approach developed is based on combining High-Gain Control (HGC) and Lyapunov
techniques. By employing a robust inversion of uncertain static nonlinearities, the new
control law can be applied to a class of systems represented by a cascade connection of
a nonlinear system and an uncertain linear system. In particular, the nonlinear control
approach is applied to the control of an aircraft utilizing FTB and can fully exploit the

FTB efficiency. Simulation and experimental results are provided that demonstrate the

AY




effectiveness of the approach. Further, the design consists of a few simple steps and does

not require a Lyapunov function for the entire system or upper bounds on the uncertainties.
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Chapter 1

Introduction

1.1 Background

Flying capability at high angles of attack is beneficial to both military and commercial
aircraft. For a modern fighter aircraft, the enhancement of maneuverability is increasingly
important. During an initial contact, the ability to turn quickly or point and shoot provides
greatly improved survivability in hostile environment. For a commercial aircraft such as the
planned High-Speed Civil Transport, an increase in lift at high angle of attack could yield
a short take-off and landing capability and hence a reduction in airport noise.

However. flow separation, vortex shedding and possibly vortex breakdown at high angles
of attack decrease the efficiency of conventional control surfaces at a time when they are most
needed due to the onset of destabilizing asymmetric flow. As a result of the inefficiency
of the conventional control surfaces, an alternate means for generating control power is
required to augment the flight control. Figure 1.1 shows separated flow around F/A-18
HARV' (High-Alpha Research Vehicle) flying at 20 © angle of attack. Because the vortex
shed from the strake breaks down in front of the vertical tails, the effectiveness of the
rudders is greatly reduced.

Creation of aerodynamic loads/moments through displacement of forebody vortices is
a promising way of providing additional control power with minimal modification to an
aircraft. Extensive work has been done to investigate the effect of forebody fineness ratio,
shape. and bluntness and flow tripping stripes on the onset of side forces loads, see for
example [28]. Also using a rotating forebody tip has been shown to alleviate side forces on

a slender body at high angles of attack [48].




[N

CHAPTER 1. INTRODUCTION

Figure 1.1: F/A-18 HARV

The potential of actively altering the flow to control an aircraft has also been investi-
gated. Several actuation methods such as deployable forebody strakes, rotating miniature
nose-tip strake, and forebody blowing have been applied.

Deployable forebody strakes have shown the capability of controlling side forces and
vaw moment. Figure 1.2 shows a movable forebody strake. NASA/Langley wnd tunnel
tests [39] indicate that the stability of an F/A-18 could be improved by the use of forebody
strakes. Ng Terry and Malcom [32] investigated the use of a rotating miniature nose-tip
strake. The system was effective in generating controllable yaw moment and is mechanically
simpler than the deployable strakes.

The use of pneumatic flow control on aircraft flving at high angle of attack has been a
topic of aerodynamic research over the past several years [22,40,47,20, 13,12,46,30], since
it can be as effective as movable strakes and potentially mechanically simpler and smaller
than movable strakes. Wong [30] experimentally demonstrated the use of injecting a thin
jet of air tangentially to the rounded leading-edge of a wing to control the roll oscillation of
a delta wing at 55 degrees angle of attack. Skow [41] investigated the concept of forebody
vortex blowing as a means to alter the symmetric vortices on the leeside of an aircraft

forebody. Nozzles located at the leeside of the forebody were used to inject a jet of air

\.

\

N
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Figure 1.2: Movable strake

directed to the rear of the vehicle. In the work of Skow, experimental results showed that
the method could generate significant yaw moments for angles of attack between 22 and
55 deg},rees and simulations indicated that departure/spin recovery characteristics could be
improved.

Another pneumatic technique is the concept of Forebody Tangential Blowing (FTB)
[7.6.4.5]. It is one of the most studied and promising ways of altering the flow over the
forebody and is the method used in this study. In this technique, a thin sheet of air is
injected tangent to the forebody of an aircraft. The injected air moves the separation lines
on the forebody and changes the amount of vorticity that is shed. As a consequence, the
strength and positions of the vorticities are affected by blowing [36,22]. For example, Figure
1.3 [9] represents a flow visualization result that shows the basic structure of the flow. The

effect of blowing is mainly to increase or decrease the asymmetry, depending on which side
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No Blowing Blowing

Forebody

Wing-Body

———————--

More symmetric

Figure 1.3: Flow visualization of FTB on forebody vortices

the blowing is applied from. In the figure, a small amount of blowing at the forebody is
applied to decrease the asymmetry. The blowing makes the two vortex strengths over the
wing-body position more symmetric. This leads to a smaller roll moment. A similar effect
can be achieved in the yaw direction.

One major factor that currently limits the use of FTB is that it is a highly nonlinear
and uncertain effector. The forces and moments it produces on an aircraft are complex
functions of the actuating air supply, and also depend on the aircraft state. Figure 1.4
shows one example. In the figure, the horizontal axis represents the amount of blowing
and the vertical axis is the nondimensional coefficient of roll moment. The various curves
correspond to the various roll angles. (Details of this plot are discussed in Chapter 3.)
From the plot, it is observed that blowing characteristics are not only highly nonlinear in

the amount of blowing but also are dependent on the aircraft state (roll angle in this case).
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Figure 1.5: Control Plant structure

Further, FTB differs from conventional devices in that it is not represented well as an
incremental control device. That is, the aircraft stability derivatives depend on the level
of blowing. Furthermore, the nonlinear properties have many uncertain factors due to the

highly nonlinear nature of the device.

1.2 Control using FTB

The generic problem of using FTB to control an aircraft is presented in Figure 1.5. It
shows a blowing characteristic (represented by the fuzzy nonlinear curve). (See Figure 1.4

for real data.) In this figure, m represents the forces and moments that act on the aircraft
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Figure 1.6: Control Structure in [1]

due to blowing. The three standard issues associated with all control designs are of course
applicable to this system: The control must provide adequate performance, be sufficiently
robust, and must minimize the amount of control power consumed. The factor that makes
addressing these issues particularly challenging in this application is that the control device
in question is highly nonlinear and uncertain where it is most efficient. That is, FTB
provides very powerful effects (e.g. forces and moments) at low levels of blowing but the
characteristic relating input to output is very nonlinear in this region. On the other hand,
if higher levels of blowing are used, then the characteristics become well behaved but the
control authority decreases and the control effort increases. Hence, the trade between
robustness and control usage is particularly acute (Figur 1.4). In order to exploit the high
efficiency possible with FTB, a new approach must be developed. The ultimate goal of
this work, therefore, is to develop a new generic approach to nonlinear control that can
robustly exploit the efficiency of powerful but highly nonlinear and uncertain systems. The
new approach will be able to robustly use the small levels of blowing in the regime where
FTB is most efficient but the characteristic is highly nonlinear and urrcertain. With such

an apptoach, FTB can be a very efficient device for flight control at high angles of attack.

1.3 Previous Research

Previous studies have shown that control laws using FTB can be developed using conven-

tional nonlinear control approaches [1,35].
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Figure 1.7: Control Structure in [34]

Adams et al. [1] used experimental data on the effects of forebody blowing to augment
the yaw control of a modified VISTA F-16 aircraft in simulation. Assumptions were made
that blowing provided additional control and that vehicle characteristics were not affected
by blowing. They used Bang-Bang control to achieve a sliding mode and the Bang-Bang
control used a fixed amount of blowing air. This control scheme is depicted in Figure 1.6.
By using the fixed amount of air that is outside of the highly nonlinear region, the highly
nonlinear characteristics of FTB were effectively replaced with a known relay nonlinearity
(Figure 1.6). Simulation results showed that significant improvement in high angle of attack
performance could be achieved using this technique. Further, they analyzed the closed-loop
system using describing function and g techniques and showed that the closed-lozp system
was robust. The amount of air used in the Bang-Bang control was chosen so that the
highly nonlinear but efficient characteristics of FTB at small levels of blowing were avoided.
Consequently, the potential efficiency of using FTB at small levels of blowing was not
explored.

In a separate study, Pedreiro [34] developed a dynamic FTB aerodynamic model. Based
on the model, he simplified an FTB system as a connection of a linear system and a known
~ nonlinearity (relay-type) by using a fixed minimum amount of air. Figure 1.7 shows the
control structure he used. He demonstrated the effectiveness of this approach in wind tunnel
experiments using a unique apparatus. Since a fixed minimum amount of air was also chosen
large enough to avoid highly nonlinear but powerful characteristics, the high efficiency of

FTB was not explored fully in this work either.
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As mentioned above, in order to exploit the full efficiency possible with FTB, a controller
must operate at low levels of blowing where the actuation effects are highly nonlinear. This
objective could be achieved with a control law that could invert the nonlinear character-
istics. However, the inversion of these highly nonlinear effect which involve a high degree
of uncertainty can lead to a very sensitive, and possibly even unstable, closed loop system.
Any such inversion technique must be robust and explicitly take inte accaunt the associated
uncertainties. Only in this way can satisfactory performance be guaranteed.

Several nonlinear control techniques for robustification for highly nonlinear system with
significant uncertainties (such as the FTB system) have been proposed. Reviews of these
techniques are available in the literature, for example, [10,43]. None of these existing
techniques is directly applicable to robustifying the inversion of highly nonlinear uncertain
characteristics encountered in FTB, however, because the upper bounds of uncertainties
and/or a full dimensional Lyapunov function are required in their basic forms. Tight upper
bounds of uncertainties are difficult to achieve for the FTB system. Also, it can be extremely
difficult to find a full dimensional Lyapunov function. Even if it is found, using it could be
a problem for the real-time implementation because of the added complexity with higher
dimensionality. Brief descriptions of some of these techniques are given below:

Sliding Mode Control [16,45, 24,23, 19, 44] is a powerful technique for dealing with
matched uncertainties [27]. It only needs a low dimensional Lyapunov function. However,
it requires the information on the upper bounds of uncertainties in the system. This in-
formation is not precisely known in most systems (including the FTB system). Usually,
over-estimated values are used to guarantee the stability of the system, because under-
estimated bounds can lead to instability of the closed-loop system. Also, discontinuous
control results from sliding mode control. Some measures such as boundary layer need to
be taken to avoid chattering due to discontinuity.

Lvapunov Redesign [21,11] is another effective way of handling uncertainties when the
upper bounds of uncertainties are known, uncertainties are matched and a full dimensional
Lvapunov function for the nominal system is available. The necessity of the upper bounds
of uncertainties is again problematic. This technique also generates discontinuous control.
Furthermore, the requirement of a full dimensional Lyapunov function for the nominal
svstem limits the usefulness of this technique.

High-Gain Control [49,31,45] is a classical tool for reduction of the effects of uncertain

factors such ‘as disturbances, parameter variations, and distortions. In its basic form, the
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technique is effective when uncertainties are matched. Also, High-Gain control requires that
systems be transformable to a singular perturbation form. Transforming the FTB system
into the form requires an artificial introduction of singular parameters. which are difficult
to identifv. |

Dynamic Nonlinear Damping [26,27,29] is a promising technique for generating a control
law when the information on the upper bounds of uncertainties is unknown but uncertainties
are matched. In its basic form, however, a full dimensional Lyapunov function for the
nominal system is required. The advantage of not requiring the information on the upper
bounds is blended into the control approach proposed in this dissertation. (See Section
4.3.2)

In summary, none of these existing techniques is directly applicable to the problem of
FTB control.

1.4 Research Objectives

The primary objective of this research is to develop a new generic approach to nonlin-
ear control that can robustly invert highly nonlinear and uncertain characteristics withbut
requiring the upper bounds of uncertainties and a full dimensional Lyapunov function.

The secondary objective is to validate experimentally this new approach in the control -
of an FTB system and hence demonstrate the efficiency possible with FTB while providing

sufficiert robustness.

1.5 Contributions

In pursuit of achieving the objectives stated above, the research reported in this dissertation

has resulted in the following contributions.

e A new nonlinear control approach is developed that robustly controls a class of uncer-
tain nonlinear systems. This approach is generically applicable to a class of nonlinear
svstems represented by a cascade connection of a nonlinear dynamical system and an
uncertain linear dynamical system. It robustly inverts uncertain static nonlinearities
and consists of a few simple steps that allow time-scale separation of each step. Nei-
ther upper bounds on the uncertainties nor a full dimensional Lyapunov function is

required. It allows explicit trade-off between the performance and the control efforts
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e This approach is applied to the problem of FTB. It is shown to enable FTB to operate
efficiently in a sense that it can operate in small levels of blowing where it is most

efficient but highly nonlinear and uncertain.

e The approach is demonstrz.ed experimentally to achieve independent set-point track-
ing control of 2-DOF sysiem (roll and “yaw” angles) with FTB and flaperons at
high angle of attack. The results demonstrate reduction in air usage to about 1 /3 of
that achieved with conventional Bang-Bang control while the bound of the controlled

output is only doubled.

1.6 Thesis Outline

The experimental apparatus used in this thesis is introduced in Chapter 2. The character-
istics of the wind tunnel, wind tunnel aircraft model, model support system, air injection
system, flaperon system and data acquisition and real-time control are presented.

In Chapter 3, a mathematical model of the FTB system described in Chapter 2 is
developed. This model consists of the rigid body dynamics and the aerodynamic model.
FTB characteristics are presented in this chapter. Also included are descriptions of the
model uncertainties and the simplifications of the static aerodynamic characteristics.

The details of the control design approach are described in Chapter 4. A class of systems
represented by a cascade connection of a nonlinear dynamical system and an uncertain linear
dynamical system is introduced. The main control design approach which consists of three
steps (virtual control design, reduced order observer design and High-Gain Lyapunov control
design) is described in detail. The proofs of stability are also given.

In Chapter 5, the nonlinear control design is applied to the FTB system in three configu-
rations: one Degree of Freedom (1-DOF) roll tracking, 2-DOF (roll and “yaw”) stabilization
with blowing only and 2-DOF tracking with blowing and flaperons. Each step of the control
design for these three configurations is explained in detail. Simulation and experimental
results are presented.

Chapter 6 presents the summary of this thesis, the conclusion and the contributions.
The recommendations for future studies are also presented.

Appendix A contains information on the detailed geometry and mass/inertia properties

of the the wind tunnel aircraft model used in the research.
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Appendix B discusses an active torque cancellation (ATC) technique employed in the
experiments. ATC eliminates the effect of the gravity torque and reduces the effect of the
large moment of inertia of the model supporting system so that the motion of the wind

tunnel aircraft model is dominated by aerodynamic loads.




Chapter 2

Experimental Apparatus

This chapter describes in detail the experimental apparatus which was used for FTB ex-
periments.

The system consists of a tailless, delta wing model that is constrained to move in two
degrees of freedom inside a small wind tunnel located at Stanford University. This model has
both an FTB svstem and movable flaperons as control effectors. This system was originally
developed by Pedreiro [33]. With the flaperons added during this research, this system
provides both the motivation for and the means to validate experimentally the nonlinear
control approach.developed in Chapter 4.

This chapter begins with the main characteristics of the wind tunnel facilities followed
bv a description of a unique model support system with two degrees-of-frecdom which
approximates the lateral-directional motion of the aircraft. Then, a wind tunnel aircraft
model which has FTB capability as well as movable flaperons is introduced. Regarding the
model. the air injection system and measurement of the amount of blowing air in terms
of non-dimensional coefficient are described. Also described are the servo control of the
injected flow and the servo control of two mouvabr flaperons. Lastly, detailed information
on the computer hardware and software used in data acquisition and real-time control is

presented.

12
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"Figure 2.1: Top view of the wind runnel

2.1 Wind Tunnel Facilities

The wind tunnel facility of the Aeronautics and Astronautics Department at Stanford Uni-
versity was used for the experiments conducted in this research. It consists of a closed
circuit low speed wind tunnel. The top view of the wind tunnel is shown in Figure 21
The maximum free stream centerline speed at the test section is 60 m/s. The air speed
can be closed-loop controlled by a variable speed motor to which a variable pitch fan is
attached, and the temperature is also controlled by an air conditioner [38]. Screens are
located upstream of the test section which reduce the main turbulence level at the test
section to approximately 0.1 %. For the experiments conducted in this research, a nominal
free stream speed of 24.5 m/s was used.

Test section dimensions are: 0.45m x 0.45m X 0.91m, width, height and length respec-
tively. It consists of a welded cast-iron frame. The bottom wall is made of sheet metal and
top and side walls are made of plexiglas. The entire section is mounted on cast-iron castors
so that it can be attached or removed from the rest of the wind tunnel. When in place, the

test section is bolted to the exit of the tunnel contraction section.

2.2 Model Support System

The 2-DOF experimental wind tunnel apparatus being used in this investigation is shown

schematically in Figure 2.2. A unique support system is used that constrains the model to
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Figure 2.2: A schematic of the wind tunnel experimental apparatus

2-DOF [33]. The objective is to approximate the lateral-directional dynamics of an aircraft.
Of particular interest is the roll-yaw coupling at high angles of attack. The support system
can be divided into two main sub-systems. The first implements the roll degree-of-freedom,
(roll: #). The entire roll sub-system is mounted on the second sub-system which consists of
a mechanical arm that can rotate about an axis perpendicular to the longitudinal axis of the
model. This sub-system provides the second degree-of-freedom, (“yaw”: 7). The following
sign conventions are used: Roll angle (¢) is positive for the model starboard wing down
and “vaw” angle (7) is positive when the forebody moves in the starboard direction while
the rear of the model moves to the port-side. The mechanical constraints limit the degrees-
of-freedom to the following ranges:|¢| < 105° and |y| < 30°, and it is possible to change
the nominal incidence angle, ag, in the range from 37 to 55 degrees. In the experiments
conducted in this research, ag is fixed at 45 degree. This incidence is chosen because it is
the worst angle in a sense that control authority from FTB is minimum [34]. For details of

the support system, refer to [33].
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Low friction precision potentiometers! are used to measure ¢ and 7. An angular ac-
celerometer? is used to measure angular acceleration of ¢. Two linear accelerometers® are
used to measure angular acceleration of .

Point P is defined as a point on the body th‘rough which “yaw” motion occurs. All the
inertia properties and moments are about this point unless noted otherwise. Point P is
about 0.8 in behind from the center of mass (CM) of the model. Inertia properties about
CM is also given in Appendix A.

The servo motor? attached to the yaw shaft provides torque for the active torque can-
cellation that eliminates the effect of the gravity torque and reduces the effect of the large
moment of inertia of the apparatus so that the motion of the aircraft model is dominated

by aerodynamic loads. The active torque cancellation is explained in detail in Appendix B.

2.3 Wind Thnnel Aircraft Model

The aircraft model used in this research consists of a sharp leading-eage delta wing with
70 degrees sweep angle and a cone-cylinder fuselage. The length is about 11 inches and the
wing span is 5.8 inches. Details of the model are described in Appendix A. '

Blowing slots exist along both sides of the model’s forebody through which air can be
injected tangent to the body surface (Figure 2.3). Air is provided to the forebody plena
through flexible tubing that enters the model through the rear end of the fuselage. In this
research, air is blown through only one slot at a time because the focus is on minimization
of air usage. The sign convex.ion for the blowing is that the right (starboard) side blowing
is defined as positive blowing and the left (port) side as negative.

Movable flaperons are attached to the trailing edges. They can move up to % 45 degrees.
The flaperons constitute 20 % of the main wing area. Refer td [37] for details about the

sizing of the flaperons. Two motors® each with a built-in encoder® are placed inside of the

!Precision potentiometer MKV-F78S, Conductive plastic REISITOFILM, New England Instrument Com-
pany, Woonsocket, R 02895-1129

25R-220RNP,Columbia Research Labs, Inc.,1925 Macdade Blvd., Woodlyn, PA 19094

3Gystron Donner 4310A-1-P116 Linear Servo Accelerometer, Systron Donner Company, Inertial Division,
Concord, CA 94518 )

4Electro-Craft Brushless Servo System, DM-30 Drive, S-4075-R-HOOAA Motor, Reliance Motion Control
Inc., Eden Prairie, MN55344

5DC MicroMotors Series 1624 012s, Micro Mo Electronics Inc.,742 Second Avenue S. St. Petersburg,
Florida 33701

6Magnetic Encoder Series HE 16PPR, Micro Mo Electronics Inc.
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Figure 2.3: Wind tunnel model and detail of forebody slots
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rear body. They drive the flaperons through gears and can be controlled independently.- In

this research, however, they are used in opposition, i.e., they are always deflected by the

same amount in the opposite direction. The sign conventions used here are that when the

flaperons generate positive roll moment, the deflection is considered positive, i.e., the right

(starboard) side up and the left (port) side down.

2.4 Air Injection System

The amount of air injected through the slots was quantified by the jet moment coeflicient,

C,, defined as

M,V
qoosref,

m

where
m;  mass flow rate through the slot

i jet exit velocity
goo  free stream dynamic pressure

Srep  reference area, wing planform area
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Figure 2.4: C, control system

Specially designed flowmeters were used to measure the mass flow rate from which the

jet momentum coefficient was calculated. They are located outside the test section and

connected to the exit of the servo-valves which control the air flow rate and tubing which

Cu servo
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bring air to the model. For details of the measurement of jet moment coefficient using the
flowmeter, refer to [33].

A closed-loop control system was used to control the amount of air that was injected
through each slot on the model. Figure 2.4 shows the block diagram for the closed-loop
control of C,,. For.details about the analog valve control, refer to [30]. The block diagram
for the closed-loop control of C), is basically the same as the one in [34] except that the
feedforward term is removed here because it was found to produce a noisy command signal
to the valve position control. |

The performance of the C,, closed-loop control is shown in Figure 2.5 in terms of the
response to a step command. The rise time is about 0.02 seconds, which corresponds to

about 100 rad/s bandwidth.

2.5 Flaperon System

Figure 2.6 shows the block diagram for the closed-loop control of flaperons. The performance
of the flaperon control system is shown in Figure 2.7. §; represents the flaperon deflection.

The rise time is about 0.05 seconds, which corresponds to about 20 rad/s bandwidth.

2.6 Data Acquisition and Real-time Control

Stand alone personal computers equipped with plug-in data acquisition boards are used
to acquire experimental data as well as to control the FTB system. A summary of the

computer systems and software used is included in Table 2.1.

_— or
—1 PID Control - Driver/Motor > Flaperox‘l Y
) Mechanism

Encoder

Figure 2.6: é; control system
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Figure 2.7: Flaperon servo step response
Computer | Analog Programming | Program Tasks
Syvstem Digital Language Callable Description
I/O Card Subroutine
D<li XPS AT-MIO-16DE-10!] Borland C++ | NI-DAQ 6.0° Real Time Control
Pentium II | AT-AO-6! 5.022 Data Acquisition
300MHz Windows NT 4 || Static/Dynamic
Dell 310 DT2821-F-16SE* | Turbo C++ 287Lab® Active Torque Cancellation
80387 3.0° MS-DOS 6.22
20MHz

! Natijonal Instruments, 11500 N MOPAC Expway Austin, TX 78759-3504
2 C/C++ compiler for Win16/32 by Inprise Corporation, 100 Enterprise Way Scotts Valley, CA

95066
3 1/0 subroutines by National Instruments

4 Data Translation, Inc., 100 Locke Drive Marlboro, MA 01752-1192
> C/C++ compiler for DOS by Inprise Corporation
6 Assembly Language C callable real-time I/O subroutines written by Marc Ullman

Table 2.1: Data Acquisition and Control Equipment




Chapter 3

Mathematical Model

A mathematical model of the FTB system described in Chapter 2 is developed in this
chapter. The key element of the FTB system model is the aerodynamics. Aerodynamics
at high angles of attack is very complicated due to separated flow, vortex shedding and
possibly vortex breakdown. In this research, the model of aerodynamic effects is based on
the work by.Pedreiro [34] in which it was shown that the aerodynamic moments can be well
modelled using lagged static loads. This approach is not only simple enough for the use of
control design but also captures the important aspects of aerodynamics.

This chapter begins with a discussion of the rigid body dynamics of the FTB system.
The dynamics of the rigid body are expressed in terms of generalized coordinates (¢ and
~) through Euler-Lagrange equations. This is followed by a discussion of the aerodynam-
ics. The aerodynamics are modeled as lagged static moments, which are highly nonlinear
functions of the amount of blowing. Data are presented which show that the effects of the
attitude on the static moments are well behaved, the effectiveness of flaperons in generating
roll moment can be approximated as being independent of blowing and the attitude, and
that the dependency of the roll moment on the flaperon deflection can be approximated
using a linear relation.

Included is a discussion on model uncertainties, the main source of which is considered to
be aerodynamics. Specifically, the static moment characteristics and the time constants of
the aerodynamic lags are treated as uncertain factors. Simplifications of the static moments

for real-time implementation are also described.

20
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The total FTB system is represented by a cascade connection of highly nonlinear un-
certain aerodynamics that generates moments acting on the aircraft and a nonlinear rigid
body aircraft dynamics.

The model motivates a definition of a class of nonlinear systems represented by a cascade
connection of a nonlinear dynamical system and an uncertain linear dynamical system. A
new approach to nonlinear control for the class of systems are developed in Chapter 4, and

the nonlinear control is applied to the control of the FTB system in Chapter 5.

3.1 Rigid Body Dynamics

The equations of motion of the rigid body aircraft expressed in terms of the two degrees of

freedom, ¢ and 7, for large angles are developed in [34]. They are
Ip¢+ I cosd+ (I, — Iy)"y2 sin ¢ cos ¢ = mry (3.1)

(T4 + I, sin® ¢ + I, cos? §)¥ + Lz ($cos ¢ — $*sin ¢) + 2(I, — I)d¥sin ¢ cos ¢ = mry (3.2)

where, I.'s represent the inertia properties about the point P and m. represent moments.
The suffixes are z, y, z for the body fixed orthonormal frame, 1 for the roll axis (body-fixed
r axis). 2 for the “yaw” shaft axis (inertia frame), A for the “apparatus” and T for “total”.

(See Figure 2.2.) In the above equations

mr; = mp+mp . (3.3)

mry = Mo+ Mg+ my+ My

where m; and m, are the aerod.ynamic moments, and the other subscripts indicate the
origin of additional moments:
f: friction of bearings and potentiometer,
g: gravity restoring moment,
m: motor.
Incorporating an active torque cancellation (ATC) also developed in [34], yields torque
applied by the motor equal to
My = —mg + 0.914% (3.4)
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The purpose of ATC is to eliminate the effect of the gravity torque and reduce the effect
of the large moment of inertia of the apparatus (90% cancellation) so that the motion of
the aircraft model is dominated by aerodynamic loads. For details about ATC, refer to
Appendix B. Finally, the moments due to friction of the bearings and potentiometers can
be written as:

mp = —Cp19, Mpz = —CaY (3.5)

Substituting (3.4) and (3.5) into (3.1) and (3.2) yields the equations of motion as:
Ié+ I3 cosp+ (I, — Iy)"y2 sin ¢pcos ¢ = m; — Cflé (3.6)
(Iy sin? ¢+ I, cos? p+0.114)+ Iu(<}5cos¢> — $?sin ¢y +2(1, - Iz)q's"ys'm ¢ cos = ma— oY

(3.7)

These can be rewritten in Euler-Lagrange form as

H(g)j+C(g:9)g=m—~Crd (3.8)
where,
g=[¢""
I I, cos¢
H(g) = : L,
I..cos¢ I,sin¢p+1I.cos*d+0.114
. 0 I, — I,)¥sin ¢ cos 4
Clg,4) = . . (I = LYysind
(I, — I.)ysingcos ¢ — I.¢sind (I, — I.)¢sin ¢pcos ¢
Cf — Cfl 0
0 Cf2
Finally, these equations can be written in a state-variable form by solving for ¢ and 4:
0 I 0
? = A q + | m (3.9)
g 0 —H(g)7'C(g,9) | | ¢ H(q)

Clg,9) =Cl(g:9) +Cy (3.10)
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Hence,
&= f(2)+g(x)m, f(0)=0 (3.11)

where z = [¢T ¢T)T = [¢ 7 (ﬁ"y]T and the vector m is the applied aerodynamic moment in

each degree of freedom, m = [m, mo)T.

3.2 Aerodynamic Model

The model of the aerodynamic effects of FTB is based on the work [35,34] in which it was
shown that the aerodynamic moments can be well modeled with lagged static loads. (Static

and dynamic characteristics are described in Section 3.3.) That is,

n = Fon+ Gems(z,u) (3.12)
m = Hup | (3.13)

where 7 is the vector of internal states of the aerodynamics, m is the resultant aerodynamic
moments, and u is the control input (v = [C, §;]F). ms(z,u) is the vector of static
aerodynamic moments, which are highly nonlinear functions of C,. The static aerodynamic
moments are described in Section 3.3. Since two independent first order lags for both

aerodvnamic moments are used, F,, G, and H, are expressed as:

L 9 10
71 JH, = (3.14)
0 }—2 0 1

7. (i = 1,2) is the time constant of the lag from my, (z,u) to m;. (Justification of the two

independent lags is given in Section 3.3.2.) The numerical values are shown in Appendix

A. The aerodynamic equation can be simplified as
m = F,m+ Gymg(z,u), (3.15)

because with the H, = I, n = m.
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3.3 FTB characteristics

FTB characteristics are discussed in this section. Static characteristics of FTB are intro-

duced first, and a discussion of the dynamic characteristics then follows.

3.2.1 Static characteristics

Figure 3.1 to Figure 3.6 show the static moment characteristics as functions of C,,, Fig-
ure 3.7 and Figure 3.8 show the effects of the aircraft model attitude (¢ and 7). .Figure 3.9
to Figure 3.12 provide data on the effect of the flaperon deflection (67). Static moments
(roll moment and “yaw” moment) are plotted for various Cy, 6¢, ¢ and v in nondimen-
sional coefficients, C; (roll moment) and Cp (“yaw” moment). All the static data were
measured over 3.0 seconds at 1,000Hz and averaged over the 3,000 data points. Each of

these characteristics is described below.

Effect of C,

Figure 3.1 to Figure 3.3 present roll and “yaw” moment coefficients as functions of C, for
various ¢ with §; = 0 with v fixed at 0°, -10°, 10° respectively. Figure 3.4 to Figure 3.6
~ show data for various v with §; = 0° with ¢ fixed at 0°, -20°, 20° respectively. The following

observations can be made from the data.
e Both roll and “yaw” static moments are highly nonlinear functions of C,..

e Nonlinearities of C; and Cy, as functions of C,, in small levels of blowing (|C,,| < 0.01)
are more severe than those in larger levels of blowing at any fixed ¢ and « in the sense
that the slopes are steeper and the sign changes of the slopes are more frequent

(especially in Cy).

e Roll moment can be generated with small levels of blowing at almost all attitudes,
although the characteristics change abruptly. For example, C; curve in Figure 3.1 at

o = 0° reaches at maximum value (= 0.013) at C, = —0.004.

e “Yaw” moment exhibits cubic-like curves in small levels of blowing at any attitudes,
which lead to control reversal. For example, the C;, curve in Figure 3.1 at ¢ = 0°
changes the sign of the slope at C,, = 0.0015 and changes the sign of the value at
C, = 0.003.
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e Nonlinearities in the roll moment characteristic are more severe than that of “vaw”
moment. For example, comparison between the C; curve at ¢ = 0° and the C,, curve

at ¢ = 0° in Figure 3.1 reveals that C; curve changes more abruptly.

e Characteristics are no* sector bounded nor do they pass through the origin.

Effect of ¢ and v

Figure 3.7 and Figure 3.8 show roll and yaw moment coefficients as functions of ¢ and 7
for various C, with §; = 0°. Both coefficients are not highly nonlinear functions of ¢ and
~. However, it can be seen that the stability derivatives (%—i‘ and %C;L) change due to C,.
(The slopes of the curves depend on C,.) Static moment is symmetric in both ¢ and v

regardless of C,.

Effect of flaperon (collective deflection)

Figure 3.9 shows the effects of the flaperons on the roll and the “yaw” moment for various
C, at ¢ = 0°,7 = 0°. The data clearly show that the flaperon deflection (ds) is more
effective in generating roll moment (C;) than does C, while it has smaller effects on the
“yaw” moment (Cp) than C,. The maximum change in C; due to C, is about 0.015 (for
example, from the center curve corresponding to &y = 0°), and the maximum change in
C; due to §; is about 0.04 (the change in C; from the center curve to the bottom one
corresponding to §; = +40° jor all values of C,,). This is more than twice the change due to
C,. The maximum change in C,, due to C,, is about 0.25 (for example, from the center curve
corresponding to §; = 0°) and the maximum change in C, due to é; is at most about 0.05
for all values of C,. This is about 1/5 of the change due to C,. Figure 3.10, Figure 3.11
and Figure 3.12 respectively show the incremental moment changes due to the flaperon
deflection. The effectiveness of the flaperon deflection in generating roll moments is, to a
first approximation, independent of C,, ¢ and 7, since the curves are unaffected by changes
in these quantities. Furthermore, all the curves are nearly straight lines. Therefore, the
depéndency of the roll moment on the flaperon deflection can be approximated as a linear
relation. In contrast to the roll moment, the “yaw” moment changes due to the flaperon
deflection cannot be approximated by a linear relation, but the amount of the changes is
much smaller than the changes due to blowing. As explained above, the effectiveness of the

flaperon in generating “yaw” moments is at most about 1/5 of that of Cy.
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3.3.2 Dynamic characteristics
Effect of C,

The measured time histories for roll and yaw moment responses to blowing are presented
in Figure 3.13 [34] as well as first order lag approximations. It is seen that the first order

lag approximation adequately represents the response of roll and yaw moments.

Effect of flaperon (collective deflection)

Figure 3.14 shows roll moment response to the deflection of flaperons. The first order lag
approximation is also shown in the same plot. As in the case of blowing, the response to

the flaperon is also well approximated with the first order lag.

3.3.3 Summary

Static roll and “yaw” moments are highly nonlinear functions of the amount of blowing in
the small levels of blowing in the sense that the slopes are steep or the sign changes of the
slopes are frequent, while they are well behaved in the large levels of blowing.

The effect of the attitude on moments is well behaved. Effectiveness of flaperons in gen-
erating roll moment can be approximated as being independent of blowing and the attitude,
and the dependency of the roll moment on the flaperon deflection can be approximated as a

linear relation. The dynamic effects can be adequately approximated with first order lags.
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3.4 Model Uncertainties

For this research, it is ascufhed that all the properties of the rigid body are assumed known.

(If there were uncertain parameters in the rigid body dynamics, they would be treated in the

“ virtual control design” described in Section 4.2.1 and Section 5.1.3.) The aerodynamics

is considered to be the source of uncertainties. Further, the static moment characteristics

are the dominant uncertain factor in the system. The uncertainties of the static moments

come from the measurement errors of the static moments, the ereese in the C,, servo control

and variations in the air speed.

The static moment m(z,u), which is a function of the rigid body states (z) and the

input (u = [C, 6/]7), can be decomposed as follows:

mg(z,u) = Ms(z, u) + dmy(z, u).

(3.16)
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where 77,(z, u) is the vector of known nominal static aerodvnamic moments given in nu-
merical data (e.g. Figure 3.1), and dm,(z, u) is the vector of uncertain static aerodynamic
moments. Schematically, the uncertain static moment is shown in Figure 3.15. The con-
stants 7, and/or 7, can also be uncertain. Hence, (3.15) can be expressed in the following

form, .
m = (Fy + 0F,)m+ (Go + 6G,) (Ms{z, u) + dmg(z,w)). ’ (3.17)

If all the system uncertainties are lumped into w, defined as
w= G 6F,m + G.dmy(z, u) + 6G, Ty (z, u) + 6Godms(z, u)), (3.18)
(G, is invertible. Refer to (3.14).) the resulting equation becomes
m = Fom + G, (s (z, u) + w). (3.19)

Note that each component of w is not necessarily small but it is assumed bounded by an

unknown constant, that is,

|w;| < pi (unknown), (i =1,2). ‘ (3.20)

3.5 Nominal Static Aerodynamic Moment

On constructing the nominal static aerodynamic moments, 7, (“yaw”) ic assumed to be
independent of &7, because the effectiveness of é; is much smaller than that of Cy. (Itisat
most about 1/5 of that of C,. See Section 3.3.1 for more details.) Further, it is assumed
that 7, (roll) linearly depends on &;. (It is shown in Section 3.3.1 that the dependency
of roll moment on the flaperon deflection can be approximated using a linear relation.)

Therefore, we have the expressions:

My, (T,u) = s, (2,Cp 6f) =My, (2,C) + k5/6f (3.21)
Ms,(z,u) = s, (z,Ch) (3.22)

The neglected effects of the flaperon deflection on m; are regarded as part of dm,. These
simplifications facilitate the real-time implementation of control because the process of

finding control inputs (C, and &) can be very complicated and time-consuming. With
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Figure 3.16: Block Diagram of FTB system structure

these simplifications, iterations for finding control inputs can be avoided. (Refer to Section
4.2.3.) For the purpose of 2-DOF control, FTB is used for controlling “yaw” (v) motion

and the flaperons for roll (¢) motion.

3.6 FTB system

Combining (3.11) and (3.19) yields the final form of the system.

i o= f(o)+g(@)m (3.23)
m = F,m+ G.(M(z,u)+ w) (3.24)

Since both angular accelerations are assumed to be available for control and both angular
rates are obtainable by numerically differentiating the roll and “yaw” angles, the measured
output vector is

y=[T 7§ =[ov o764 (3.25)

Note that angular accelerometers are available in the experimental system, and they can be
provided on operational aircraft.

Finally each component of w is assumed to be bounded by

|wi] < p; (unknown), (z=1,2). (3.26)
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The complete FTB system structure is depicted in Figure 3.16. The FTB system is repre-
sented by a cascade connection of highly nonlinear uncertain aerodynamics that generates

moments acting on the aircraft and a nonlinear rigid body aircraft dynamics.

7

3.7 Summary

In this chapter, a mathematical model of the F'TB system is developed. The FTB system is
described as a cascade connection of highly nonlinear uncertain aerodynamics and nonlinear
rigid body dynamics. The aerodynamics are modeled as first-order lagged static moments,
which are highly nonlinear functions of the amount of blowing. The actual data of these
nonlinear functions are presented.

The main source of the model uncertainties is considered to be aerodynamics. Specif-
ically, the static moment characteristics and the time constants of the aerodynamic lags
are treated as uncertain factors. Simplifications of the static moment characteristics are

introduced for real-time implementation of the control laws developed in Chapter 4.




Chapter 4
Approach to Nonlinear Control

In this Chapter, a new nonlinear approach is developed for the control of a class of nonlin-
ear systems represented by a cascade connection of a nonlinear dynamical system and an
uncertain linear dynamical system. The FTB system developed in the previous chapter is
of this class.

The approach yields a technique that robustly inverts the highly nonlinear and uncertain
characteristics by taking the effect of uncertainties on the stability into account.

The approach is applied to the FTB system and the results in simulations and experi-
ments are presented in Chapter 5. The control is shown to allow the system to operate in a
region where the characteristics are highly nonlinear and uncertain and hence achieves the
goal of reducing the amount of air required.

The control design consists of three simple steps. The first step is to design a virtual
control, the second step is to construct a reduced order observer for the internal states if
required, and the last step is to design a High-Gain Lyapunov control. Time-scale separation
of each step is possible since the time scale of each step is specifiable. Information on the
upper bounds of uncertainties is not required. If the information on the liwands is available,
however, the worst-case performance can be evaluated a priori and the design parameters
can be computed a priori that guarantee the required performance. Also a full dimensional
Lyapunov function for the whole system is not required to generate the control law. Only a
quadratic Lyapunov function for a lower dimensional manifold is used which simplifies the
design process. Further, the design allows the trade-off between the performance and the

control efforts by simply increasing or decreasing design parameters.

45
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Figure 4.1: Block Diagram of nonlinear system under consideration

The chapter begins with the problem statement in which the system description and the
assumptions regarding the system are described. Each step of the nonlinear control design

is explained in detail and the proof of stability is given.

4.1 Problem Statement

4.1.1 System Description

The system under consideration is described as a cascade connection of a nonlinear dy-
namical system (main system, (4.1)) and an uncertain linear dynamical system (subsystem,
(4.2). (4.3)) with uncertain static nonlinearities. The system class includes the FTB sys—
tem developed in the previous chapter, but is more general because the linear subsystem
(subsystem. (4.2), (4.3)) is not constrained to have only independent first order lags. The

dvnamics of the system are:

i = f@)+g(x)m | (4.1)
o = (Fao+§Fa)770+ (G, +0G,) (T, (z, u) + dmy(z, u)) (4.2)
m = Hgn (4.3)

The measured output is
y=[zT mT]T._ (4.4)

where z € R, 5, € R™, ms; € R", m € R* v € R™ and y € R"=*7m and n, > .
F,,,G,, and H,, are known nominal constant matrices of appropriate size. §F, and §G, are
uncertain matrices. 7,(z, ) is the vector of known nominal nonlinearities and dms(z, u) is

the vector of uncertain nonlinearities. The block diagram is depicted in Figure 4.1.
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4.1.2 Assumptions

Main system:

e f(z) and g(z) are known. .

e g(z) is affinely bounded, i.e., 3cy; > 0 (i = 1,2) such that

g (z)ll2 < cqyllzll2 + cg (4.5)

e z is measurable.
Subsystem:

o All the uncertainties can be collected into a lumped uncertainty w € R™™ which

satisfies the matching condition [27], i.e..
Gow = §Fano + Ga,0ms(z,u) + G, (2, u) + 0Gdmy(z,u), (4.6)

Vz € R™, V1, € R™, Yu € R™, VéF;, ¥6G, and Véms(z,u) given F,,, G,, and

s(z, u). Then, the subsystem (4.2) becomes
flo = FayTlo + Ga, (M5 (2, u) + w). (4.7)

e Each component of the unknown w is not necessarily small but is bounded by

an unkrown constant, t.e.,
|w;| < p; (unknown), (i=1,---,nm). ‘ (4.8)

Vr € R Vu € R™ and V1, € D where D = {n, € R™ | ||no]l2 < oo}.
e F,,G, and H, satisfy the following conditions.
1. The triple (F,,.Gq,, Hs,) is minimal.
2. G, and H,, are full rank.
3. det(H,,Gq,) # 0 (relative degree is one.)
4. Invariant zeros of (F.,,Ga,, Hs,) are in the open left half-complex plane.
(Minimum phase)

e m is measurable.
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Figure 4.2: Block Diagram of Controller/Plant structure

4.2 Nonlinear Control Design

Given an uncertain nonlinear system in the class described above, the control should address
the following three standard issues associated with all control design: The control must
provide adequate performance, be sufficiently robust, and must minimize the amount of
control power consumed. An approach to designing a nonlinear control is developed here
that blends High Gain Control [31,49], and Lyapunov techniques [21,11,26,23]. It can
control a class of uncertain nonlinear systems by robustly inverting the uncertain static
nonlinearities.

Figure 4.2 depicts the control structure consisting of two controlloops: the outer control
loop (virtual control) and the inner control loop (High-Gain Lyapunov control) . The control
structure is similar to the standard successive loop closure. The outer loop is designed by
assuming that the inner loop works perfectly (m, = m in Figure 4.2). Then, the inner loop
is designed to achieve the small error between m, and m as quickly as possible regardless
of the uncertainties so that the performance of the entire closed loop is close to the one
without the inner loop. The design process is different from the successive loop closure in
that the inner loop design explicitly depends on the outer loop control design.

The nonlinear control design consists of three major steps:
e Virtual control

e Reduced order observer, and

o High-Gain Lyapunov control,

which are described in detail in the following sections.
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4.2.1 Step 1: Virtual Control

A continuous virtual controller (k(z)) for the main system (4.1) is designed by ignoring
the subsystem and regarding m as the control input. It is designed so that the closed-loop
system

& = f(z) + g(z)k(z) (4.9)

is stable and achieves the desired performance. This step is performed to yield a slower
time-scale closed loop (Figure 4.3) than a time-scales used in the Step 3.

Since this step ignores the existence of the subsystem and m is not the actual control
input, the actual control needs to be determined so that m is “close” to k(z). Before
deéigning the actual control input, the internal states of the subsystem need to be estimated.

This is described in the next step.

4.2.2 Step 2: Reduced Order Observer

Given the subsystem,

fo = Fo,mo+ Ga,(Ms(z,u) + w) (4.10)
m = Hyo A (4.11)

an observer that achieves asymptotic decay of the state error in the presence of the lumped
ancertainty (w) needs to be designed because the state estimates are necessary in the next
design step. The reduced order observer approach [50] achieves the asymptotic decay of the
state error in the presence of the uncertainty without the information on the upper bounds
of the uncertainty by transforming the system into a system where the uncertainty has no

Virtual Control Nonlinear System

Kz) i=f(z)+g(x)mi—r—>

Figure 4.3: Virtual Closed Loop
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direct effect on some of the states. The following describes the design process of a reduced
order observer.
The conditions in Section 4.1.2 on the triple (F,,, Ga,. Ho,) ensure that it can be linearly

transformed into the following form [17,18]:

F — l: Fall Fa12 0

.Go =
Foyy  Fap

az

] JH, =10 1), (4.12)

The eigenvalues of Fy,, are the stable invariant zeros of (F,,,Ga,, Ha,). 7o is transformed

Uit
770—>77=[ :|
: m

In the new coordinates, the subsystem dynamics are expressed as follows:

into

Til = Faunl +Fa12m (4.13)
m = Fy,m + Fapm+ G, (Ms(z,u) + w). (4.14)

The uncertainty (w) is isolated from the part of the states (7;). It is assumed that the
transformation from the original triple Fy,,G,,, Hq, to the triple Fy, G, H, in (4.12) has
been applied in the subsequent sections.

From the transformed system, it is straightforward to design a reduced order observer.

A reduced order observer for n; in (4.13) is constructed as follows:

7}]1 = Fa”ﬁl'i'Falzm (4.15)
The error dynamics are
,’.71 = Fanfll . (416)
Since Fy,, is stable,
nh— 0ast— o (4.17)

The estimate of 7 is
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The reduced order observer yields state estimate 7 such that,
f=n—1% — 0 (t = 00). (4.18)

Now that the internal states of the subsystem can be estimated by the observer in this
step, the next step is to determine the actual <ontrol input (u) so that the m is “close™ to

the virtual control (k(z)) designed in the previous step.

4.2.3 Step 3: High-Gain Lyapunov Control

Lyapunov function techniques are employed in order to achieve “small” error between m
and k(z). The design process depends on the number of available inputs. In the following
subsections, two cases are considered. First, the number of inputs is equal to the dimension
of m, i.e., Ny = M. In this case, each component of the error is controlled by the control
inputs. In the second case, only one input is available while the dimension of m is more
than one. In this case, only the norm of the error is controlled by the input. For more
general cases (1 < n, < n,,), the combination of the two cases are applicable; that is, some

components of the error are controlled but only the norm of the others are controlled.

Case 1: Number of inputs (n,) = Dimension of m (1)

The inputs (u) are determined from the following vector control Lyapunov function (Vj)
with w =0,n= 1. '
Vilw=on=s + 2 diag(as)V, = —diag(x)s® (4.19)

where a manifold (s) is defined as the difference between the virtual control (k(z)) and the
aerodynamic moments (m), t.e.,

s=m- k(z), (4.20)

and V; is a vector control Lyapunov function for s.

1
Vo= [V oo Vi, T = (s oo 362, (1.21)
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s2 represents [s -+ s2 1T, and a5 = [ag, - as,, )7 is the desired decay rate of s. The

decay rate is defined as the largest a5, such that

H Qsit . -
fl'if&e lsi(t)| =0

holds for all trajectories of s;(t). This decay rate is selected normally five to ten times faster

than the time-scale used in the virtual control design. & = [k; - K, )7 is the vector of
design parameters that determine the upper bound of ls;l,(i = 1,---,nn). The bound
can be made small by increasing ;, (i = 1,-+-,ny) as shown in Section 4.3.2. However,

increasing  generally leads to larger control efforts. Equation (4.19) can be rewritten as

diag(s)$|w=0n=4 + diag(as)s® = —diag(k)s®. (4.22)
Since
§ = m-— k(z)
. Ok(z).
R
= Hi(Far+ Golmi(e,n) +v) - 2 (f@) +geym),  (423)
and .
Slu=om=i = Ho(Fal)+ GoTig(z, 1)) — 68(;) (f(z) + g(z)m), (4.24)

then, (4.22) becomes

Ok(z)

£ (f(z) + g(z)m)] + diag(a,)s* = —diag(k)s®. (4.25)

diag(s)[He(Fuft + GaTs(z, u)) —

Finally, the input (u) can be determined by solving the following equation (n, equations

for ny(= n,) unknowns). Note that z, m and 7 are known. Thus, we have the relations:

ms(z,u) = mc(:r,m,f))—(HaGa)—ldiag(f;)s

= me(z,m,f) = [F1 - Fnm) 5 (4.26)
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m, (Nominal Static Nonlinearity)

given 1

Ks(<0)

om (1, m 7)

Figure 4.4: Inversion of nonlinearity (Determination of u)

where m.(z,m,7) and &;, (i = 1,- -, ny) are defined as:
. 1 . Ok(z) . -
me(z,m, ) = —(HoGo)™ [HoFal) — -aT(f(z)+g(z)m)+d1ag(as)s] (4.27)
[Ry - Fnp )T = (HoG.) 'diag(k) (4.28)

The process of determining u from (4.26) requires an inversion of the static nonlinearities.
Figure 4.4 depicts an example of how to determine a single control input (v). In the
figure, the curve represents the nominal static nonlinearity 7,(z, u) given z. The input u is
determined from a point where the curve intersects the horizontal line at (m.(z, m, 7) —&Ts),
which is known at any instance because z, m and 7 are known. When multiple intersections
exist. the minimum amount of the input will be chosen. Note that with the same m.(z, m, 9),
a different input results depending on the sign of #Ts. In this way, the static nonlinearities
are inverted to determine the inputs. In more general cases where multiple inputs need
to be determined and every component of ms(z,u) is dependent on multiple inputs, it is
difficult to find the inputs that satisfy (4.26). Some simplifications on the structure of
7s(z, u) may be needed to make the process feasible in real-time implementation. One
example of this process is to ignore the small effect of some inputs in the nominal static
nonlinearities and regard the neglected effect as a part of uncertainties. As will be shown in

Section 4.3, with the inputs selected as above, the stability of the system is guaranteed for
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anv positive design parameters (x). The performance and the control effort are traded-off
with the design parameters in a systematic way in a sense that increasing the parameters

leads to smaller bounds on the controlled variables and larger control effort. and vice versa.

Case 2: Number of inputs (n,) =1

When only a single input is available, the control input (u) is determined from a scalar

control Lyapunov function:
‘./slw=0,17=ﬁ + 20,V = _STI{SS’ (429)
where V; is a scalar control Lyapunov function for s.
;1 T
Ve = 55 Pss, P, = P; >0, (4.30)

a, is a scalar decay rate of ||s||z, and K, + I\"ST > 0 is a design matrix that determines
the upper bound of the ||s||2. As shown in Section 4.3.2, the bound can be made small by
increasing Amin(Ks). The left hand side of (4.29) is

Vilwmomei +205Vs = T Py8lumommi + 0T Pos (4.31)
= STPS[HaFaf]+HaGams($vu) |
2 (12 + g(eym) + sl
(4.32)
Let
K = P, diag(x), (4.33)

then (1.29) becomes

ok(z)

sTPH Foit + HoG o7 (z, u) — 52

(f(z) + g(z)m) + ass] = —sTPdiag(k)s  (4.34)

Equation (4.34) depends only on u € R! only because z, m and # are known. From this

relation, u is determined in a way similar to the multi-input case.
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z I
l Static Nonlinearities  Linear Dynamics
m, S High Gain| 4 —> ﬂL S m, [l m
—>0O—>| Lyapunrv > / 7 V > (Fa,Ga,Ha) >
4 Control v] ¢

Figure 4.5: High-Gain Lyapunov Control

Block Diagram of High-Gain Lyapunov Control Loop

A full dimensional Lyapunov function for the whole system in (z € R"*,n € R"") is not
required to generate the control law. Only a low dimensional quadratic Lyapunov function
for s € R™ is used to generate the control law. This not only simplifies the control design
process, but also makes the real-time implementation feasible. This feature is in contrast
to other nonlinear control techniques such as Lyapunov Redesign and Backstepping. The
block diagram is shown in Figure 4.5. High-Gain Lyapunov Control acts like a regulaior

for s.

4.2.4 Discussion

The resulting controlizr/plant structure is depicted in Figure 4.2. The key element is that
the inner loop achieves small error in the presence of the uncertainties. The inner loop con-
trol (High-Gain Lyapunov Control) takes the effect of the uncertainties on the stability into
account in a selective way. When the size of the uncertainties is large, the control renders
the effective gain of the controller “selectively high”. The control can adjust the control
input to counteract the large uncertainties. The selective adjustment is made possible with
the measurement of m that contains information of the uncertainties. The main idea behind
the selective adjustment of the control gain according to the size of uncertainties comes from
the nonlinear damping technique [26]. Essentially, the nonlinear approach in this chapter
is an application of the nonlinear damping technique to a smaller dimensional error space.

The idea comes from sliding mode control [23].
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4.3 Proofs

It is shown that the steps described above yield a feasible controller by proving.

1. 7 is bounded,
2. u resulting from (4.26) or (4.34) renders s(t) bounded for any w.
3. z is bounded, and

4. 7 is bounded.

4.3.1 Boundedness of 7;

Since 7j; — 0, and 7 is constructed as

7 is bounded.
llll2 < c5 (4.35)

where ¢; is the upper bound of 7.

4.3.2 Boundedness of s
Case 1: Number of inputs (n,) = Dimension of m (n,)
With v determined from (4.26), the vector control Lyapunov function (V;) with w #0,n# 17

is evaluated as follows:

V,+ 2diag(as)Vs = Vilwmog=s + 2 diag(a)Vs + diag(s) (Hako7 + HaGaw)
diag(s)(H,Fai) + H,Gow) — diag(k)s®

I

diag(s)w — diag(k)s?
< diag(|s|)p — diag(k)s? (4.36)

where @ = HoF,ij 4+ HoGow and p; = ||, (i =1, - -+ np). || is defined as [|s;] --- 2|17,

and < represents component-wise inequality. Note that p;, (i =1, --- ny,) is unknown but
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Figure 4.6: Boundedness of s

bounded. The right-hand side of each component of (4.36) reduces to

pi

—kist + pilsil = —rilsil(lsi] = =)
' ~ =2
Pi Pi 4 9~
= —ki(lsi| - 2—f~j)2+m,(l=1,"',7’m) (4.37)

In summary, it has been shown

]

g2
1

1 % Z O

- R - 2 52 (438)

‘/31 + 20‘51 ‘/5: S _F;’l(,sll - 5‘2;:—:) + 4_::

Figure 4.6 depicts the situation when a; is zero. When |s;(t)| is larger than {-’f, V..
becomes negative. This implies that V;, is decreasing as a function of time. Therefore,
|s;(1)| also decreases because Vi, is a radially unbounded positive definite function of |s;(t)].
In this way, |s;(t)| is ultimately bounded above by "i— The bound can be made small by
increasing ;, (i = 1, -+, ny) without knowing the upper bound of the uncertainties (p;).

However, increasing x normally leads to larger control efforts. Therefore, it is concluded




v
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that s;, (i = 1,- -+, ny) is ultimately bounded for any «; > 0, i.€.,
pi .
|si(O)] < =, (€= 1,0 nm) (4.39)

For all positive design parameter (), s is bounded and & determines the upper bound of
s. If the estimates of the bounds (p) of uncertainties are available, the upper bounds of
s can be computed a priori from (4.39). The information can be used to estimate the

upper bound of the controlled variables (the worst-case performance). Therefore, « can be

~ computed a priori, given the requirement of the worst-case performance. The upper bounds

of uncertainties could be under-estimated in the High-Gain Lyapunov control because any
positive x can stabilize the system. This is in contrast to sliding mode control approach,
where the upper bounds of uncertainties are required to be known or over-estimated in
order to guarantee the stability of the closed loop system. The price paid in the High-
Gain Lyapunov control for the additional stability protection is the possible excessive use
of control effort.

Note that 7 is not required to converge to 0, but merely to be bounded. Also note that

the 2-norm of s is bounded since each component of s is bounded.
lsllz < cx(x) (4.40)
where c¢,(x) is the upper bound of ||s||2, which is a function of &.

Case 2: Number of inputs (n,) =1

With u determined from (4.34), the following inequality holds.

V, + 20,V
= Vilweon=i + 205Vs + §T Py Ho (Fufi + Gow)
= s P,H,F,7 + sTP.H,Gw - sTK,s

< (”PsHaFaH?Cf} + ”PsHaGaHZP)”SHQ - STI\'-SS
< CPJ.I”‘S“? - /\min(I\—S)”SH%
2
Cpii Codi
< i (K _ p.7] 2 p.1i ‘
—_ Amln(‘[\s)(”‘s!h 2)\mzn(1\'s)) + 4Amin(I‘-5) (4 41)
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where

Coi = HPSHGFGHZCﬁ + HPsHaGa“'Zp‘ (4—12)

Equation (4.41) shows that s is bounded and its bound can be made small by increasing

Amin(Ks) regardless of w just as in the previous multi-input case. Therefore, it follows
”8”2 S Cs(I\’s)y (4.43)
where ¢, (K) is the upper bound of ||s|2, which is a function of K.

4.3.3 Boundedness of z

Let V, be a Lyapunov function for the rigid body states (z). Since the main system (4.1)
closed with the virtual control (k(z)) is (for simplicity, exponentially) stable, the following

inequalities hold from the Converse Lyapunov Theorem [27].

crllell3 < Ve(z) < eall|f3 (4.44)
. OV (z .
Vate) = 220 12 4 g(o)k(a)) < —csllal? (4.45)
oVy(z
1222, < el (4.46)
for some positive constants ¢;, (i = 1,---,4). With the use of the same Lyapunov function

¥, (x) for the system with actual m not with the virtual control (k(z)), Vi(z) is evaluated

as follows:

(@) = SEU(E)+g@m)
NV f(z)+ 9(x) (k(z) + 9))
oV,

Oz
~cllelp+ Ggl@)s
< —csllz|f3 + callzll2llg () ]l sll2- (4.47)

IA

From the assumptions in Section 4.1.2, g(z) is affinely bounded.

llg(@)ll2 < g llallz + €gpr o 2 0 (i =1,2) (4.48)
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Therefore,
Va(z) < —(cs— cacqrs) ||zl + cacgacs|ll2
C4chCs 2 (C4cg2cs)2 !
= (ol - SRy 4 1 (449)
where
¢ =3 — cacq10s (4.50)

From the above inequality, if we can show that ¢’ > 0, it follows that z is also bounded. Note
¢ > 0 is always true if g(z) is norm-bounded, because ¢y = 0 in this case and ¢’ = ¢3 > 0.
Also note that the bound on z can be made small by increasing  or Iy because increased
gain leads to smaller ultimate bound (cs) of 5. Thus, it can be concluded that the bound

on z is also controlled by x or Kj.

4.3.4 Boundedness of 7

Since s and z are bounded, and k(z) is continuous, m(= k(z) + s) is also bounded. There-
fore, it can be concluded from (4.13) that 7; is bounded, since Fy,, is stable and m is
bounded. Consequently, all the internal states (7) of the aerodynémic system (F,,Gq, Hy)

are bounded.

4.4 Summary

In this chapter, a nonlinear control approach is developed that stabilizes a class of uncertain
nonlinear systems in multiple time scales by robustly inverting uncertain static nonlineari-
ties. It is applicable to nonlinear systems with large uncertainties in the input subsystem.
It consists of a few simple steps that allow a two time-scale design. It does not require
the upper bound of uncertainties. That is, it is not necessary to know precisely the region
where the actual nonlinearities reside. However, if the estimates of the bounds are available,
the information can be used, i.e., the control performance can be evaluated a priori. The
upper bounds of uncertainties can be under-estimated, because under-estimated values do
not induce instability of the system. This is in contrast to existing approaches such as

sliding mode control, with which the upper bounds of uncertainties are required known or
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over-estimated in order to guarantee the stability of the closed loop system. Only a low di-
mensional quadratic Lyapunov function is used to generate the control law. This simplifies
the control design process. Furthermore, it allows trade-off between the performance and

the control efforts by simply increasing or decreasing the design parameters (x or K) while

preserving the stability. )

.




Chapter 5

Control Results

The nonlinear control approach developed in the previous chapter is applied to the FTB
system and the utility of the approach is demonstrated. Specifically, three configurations
are chosen for the purpose of demonstration in simulations and experiments. The first case
is 1-DOF roll angle set-point tracking. The 1-DOF system is linear except in the highly
nonlinear static roll moment characteristics. Both simulation and experimental results are
provided.

The second case is stabilization of the 2-DOF system. Simulations are conducted under
the assumption of the perfect active torque cancellation. This assumption makes the con-
figuration closer to actual flight conditions, because the gravitational torque and the large
inertia of the supporting system are perfectly eliminated.

Finally, experimental results in set-point tracking of the 2-DOF system are provided and
the performance and the control efforts are compared with a result using a conventional
control approach (Bang-Bang control).

In all cases, the nonlinear control approach can stabilize the FTB system and/or achieve
the set points with small levels of blowing. However, the performance with the small usage
of air is degraded compared to a conventional Bang-Bang control, which is a special case for
the nonlinear control in the sense that the nonlinear control structure becomes the Bang-
Bang control with large control parameters. Therefore, it can be said that the nonlinear
control approach allows the trade-off between the performance and the control effort by

tuning design parameters.

62
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5.1 Application to the FTB system

5.1.1 Control Objective
The nonlinear control design is applied to the FTB system. The control objectives include

e Determine u=C,, or u=[{C, 8] to stabilize robustly or perform set-point tracking of
m u Of L A % p <)

the uncertain system given measurement of y, and

¢ Control should minimize the amount of blowing to exploit the effectiveness of FTB.

5.1.2 System Description
From Section 3.6, the FTB system is expressed in the following form:

¢ = f(&)+g(z)m (5.1)
m = Fym+ G (Ts(z,u) + w) (5.2)

where z € R*, m € R?, m, € R?, u € R! or u € R?. The measured output vector is
y=[" " T =leve7o9" (5.3)

In order to be able to apply the nonlinear control design developed in Chapter 4 to the FTB
system, it is required to know m in real timie. For the FTB system; m can be compl;“ted
from equation (3.8) using the angular aczecierations (é and ). Therefore, the output is

equivalent to
y=[7 m]T (5.4)

The noise in the accelerations directly results in an error in m. Therefore, both accelerations
are filtered with analog prefilters. The error in m can be regarded as another source of
uncertainties.

The uncertainty w is assumed to satisfy the following:
|w;| < p; (unknown), (¢ =1,2). (5.5)
The function g(z) in (5.1) is norm bounded, i.e.,

llg(z)ll2 < g2, (5.6)
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because

gle) =

0
H(g)™
from (3.9), and H(q) satisfies [15]

A

Lmin

I < H(q) < Xmae] a (5.8)

for all possible q. Therefore, ¢’ in (4.50) is always positive because ¢y = 0 in this case.

Ut
<O
=

¢ =c3—cacqics=0¢3>0 (

Since two independent first order lags for both aerodynamic moments are considered, all
the conditions (Section 4.1.2) on the triple F,,,Gq,, H,, are satisfied. Note that full state
information is also available in this case, so the reduced order observer (Stép 2) is not

necessary.

5.1.3 Virtual Control

There are multiple possible approaches to design the continuous virtual control (k(z)) for

the rigid body dynamics, such as Feedback Linearization [42], Passivity-based approach [15]

and Proportional and Derivatives (Integral) (PID) control [2]. A PD (PID) controller is

employed here, since it is typically more robust than the other approaches because it does

not require exact system parameters. As can be seen in the desig= of the virtual control in

Section 5.3.1 and Section 5.3.2, the performance is acceptable. Also, it has the advantage
ok(z)

of simplicity of implementationl. For example, =5~ needs to be evaluated in the design

process where this term simply becomes the gain matrices when k(z) is PD (PID) control.
5.1.4 High-Gain Lyapunov Control

As shown in Section 4.2.3, separate cases with two and one actuator(s) are considered.

Two inputs: C, and d;

As a result of the simplifications on the construction of the nominal static moment char-

acteristics in Section 3.5, (4.26) reduces to two equations in two unknowns (C, and dy).
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These are:

msl (‘T7C#) +k5f5f = Tn’cl (:L‘.m)— I:{

Ms, (2,Cy) = me,(z,m)—k

where m.(z,m) and &, (i = 1,2) are defined as:

me(z,m) = —G‘I[Fam—ak(m)

a

(71 #2)" = G;'diag(k).

Fe (f(z) + g(z)m) + diag(as)

s]

(5.12)
(5.13)

In this simplified form, no iterations are required to solve for the two control inputs (C),

and &) from the two nonlinear characteristics, because C), can be determined solely from

(5.11).

Tii, (yaw’ static moment)

¢ M,(z, m)
y Es (>0)

Figure 5.1: Inversion of a nonlinear static moment (Determination of C},)

The schematic diagram that shows how to determine C|, is given in Figure 5.1. Given z,

the nominal “yaw” moment curve (7, (z,C,)) is fixed. C,, is determined by finding values

of 75 (z, C,) equal to (me,(z, m) — &1s). Note that with the same m., (z,m), a different C},

results depending on the sign of &1 s, as explained in Section 4.2.3. In this way, the nominal

“vaw” moment curve is inverted to find C,,. When multiple solutions exist, the minimum

C, will be chosen. When & is so large that no C, exists that solves (5.11), the extreme
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values of C', will be used because the moments generated by the values are sign-definite (less
uncertain in larger blowing region). This scheme renders the control structure Bang-Bang

control. Once C,, is determined, &5 is computed from (5.10).

One input: C, only
Equation (4.34) for this case is as follows:

Ok(z)

—al—_(f(:c) + g(z)m) + ;8] = —sT Pydiag(ki, k2)s  (5.14)

sTPs[Fam + G, ms(z,C,) —

which is a function of C, only, because = and m are known. From this function, C,, is
determined also by inverting the nonlinear function (5.14). Although the nonlinear function
is more complicated than the multi-input case, only the single unknown (C,,) is searched.

Therefore, the process of finding C,, is no harder than the multi-input case.

5.2 1-DOF ()

5.2.1 System Description

In order to demonstrate the effectiveness of the control approach in a simple setting, 1-DOF
roll(¢) motion is used as an example. In this case, the nonlinearity lies only in the static
roll moment characteristic. Roll motion is chosen over “yaw” motion, because, as shown in
the figures in Chapter 3, the nonlinearities in the roll moment characteristics are stronger
than those of “vaw” moment in the sense that the slopes are steeper and the sign change
of the slopes is more frequent. Furthermore, the active torque cancellation is not necessary
because there is no gravitational moment about the roll axis, and this axis has a much
smaller moment of inertia.

When the FTB system is confined to the 1-DOF roll axis at ¥ = 0°, the rigid body
dvnamics reduce to a simple Linear Time-Invariant (LTI) system. The system is described

as follows:

t = F.a+Grm, (5.15)
m = Fyom+Gyms(z,C,), (5.16)
z = (o6
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¢ Aerodynamic Model

Rigid Body
1 9,6,0
S(Ixs + Cﬂ) |

Figure 5.2: Block Diagram of the 1-DOF system (¢)

y = (¢ ¢ =[x m”

0 1 0 1 1
Fr= ,Gr: ,Fa:——vGa:_a
0 —CI" Il T1 T1

A block diagram representation of the dynamics ((5.15), (5.16)) is given in Figure 5.2.

5.2.2 Set-point Tracking

A common approach to achieve set point tracking is to add an integrator for zero steady

state error. Thus, the system is augmented with an integrator as follows:

¢err = ¢cmd - ¢' (517)
¢ = F.ao+Gm. (5.18)

The extended state vector is -
Te = [/ Gerrdl ¢ ¢] . (519)

Virtual Control

Since the rigid body dynamics form a simple LTI system, the virtual control can be designed
using any linear control technique. Pole assignment is used here because it is one of the
simplest techniques to design a linear controller for an LTI system when all the states are
available. The bandwidth of the closed loop system is set about 10 rad/s so that the closed
loop system has a time constant of approximately 0.1 seconds. The 10 (rad/s) bandwidth
of the closed loop is about 1/10 of the bandwidth of the C), servo control (Refer to Section

2.4). Therefore, as a rule of thumb, the dynamics of the C), servo control can be neglected
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Virtual control
20 T T T 1 T T H T T
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1
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0.002

virtual momen

-0.002
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Figure 5.3: Virtual control (1-DOF set-point tracking)

in designing an outer loop control. The camping of the dominant poles is set around 0.7 to
strike a balance between the overshoot and the rise time. When the poles of the closed loop

are assigned at [-8.5 4 8.55, —8.5], then the linear feedback gain is obtained as follows:
k(ze) = Kreze = —[K; K, Kgz,

where

K, =0.0509, K; = 0.2162, K4 = 0.0029.

With this gain matrix, the virtual closed loopbis stable and its response to the step input
is shown in Figure 5.3. The response of ¢ is as desired. The maximum virtual moment is

about 0.008 (Nm). This is small enough to be achieved with C.,.
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0:02 T T T T T T T T T

time (sec)

Figure 5.4: 1-DOF (¢) set-point tracking (Simulation), x = 5

High-Gain Lyapunov Control

The decay rate of s is set at a;; = 50.0 so that this becomes 5 times faster than the bandwidth
of the virtual closed loop of the rigid body dynamics.

Simulétion Results

In simulations, a constant bias in C,, is used as a source of error (6C,, = 0.0005). This bias

error is chosen to test the robustness of the control approach because a small bias leads to

large errors (§m, = 0.016 ~ 70 % of full range) in the static roll moment due to the steep
slope in the characteristics.
Simulation results are shown in Figure 5.4, Figure 5.5 and Figure 5.6 for different values

of k. Table 5.1 shows the summary of the simulation results. Figure 5.4 shows a result
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a, = 50, & = 50
20 T T T T T T T T T
| | 1 | I i |
2 3 4 5
T T T T 1 T T
-~ Ol e e =
S
-0.05 : ' : . : : ' ' '
0 1 2 3 4 5
0.02 T T T 1 T T T i T
-0.02 s ‘ : ‘ : ' ' ' '
0.5 1
time (sec)

Figure 5.5: 1-DOF (¢) set-point tracking (Simulation), & = 50

[ « || s ¢ peak Ao C,
5 0.0112 | 16.44° | 0.1380° | 0.0036
50 il 0.0062 | 15.63° | 0.0168° | 0.0037

500 || 0.0042 | 12.92° | 0.2022° | 0.0208

Table 5.1: Summary of 1-DOF simulation results

with a smaller k (=5). ¢ achieves the commanded value (10°) with very small C),. The
average C, is 0.0036 in ¢ € [0 5] in the figure. However, the response is not as smooth
as in Figure 5.5 where a larger k (=50) is used and the average C, is 0.0037. Also, the
bound of s (As =0.0112) in Figure 5.4 is larger than that (As = 0.0062) in Figure 5.5. The

overall response of ¢ in Figure 5.5 is smooth and is comparable to that of the virtual control

response (See Figure 5.3). In Figure 5.6, a result with a very large (=500) is presented.

With the large x, the control structure becomes Bang-Bang control as described in Section
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a, = 50, k = 500 (Bang-Bang Control)
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Figure 5.6: 1-DOF (¢) set-point tracking (Simulation), x = 500 (Bang-Bang)

5.1.4. (Bang-Bang control is a conventional approach to the control of nonlinear uncertain
svstems [45].) The set point is achieved without steady state error, the response is very
smooth. and s is contained in a small bound (As = 0.0042), but the level of C,, is very large
corﬁpared to the previous two results. In this case, the average C,, is 0.0208.

As & is increased, the bound of s is decreased and the overall response becomes closer
to that of the virtual control. However, increasing « leads to a larger control effort as
explained in Section 5.1.4. In this specific case, increasing « from 5 to 50 does not result in
a large increase in C,,, because the roll moment characteristics exhibit strong nonlinearities
that can generate large roll moment with a small C,. (For example, see Figure 3.1.) The
larger A¢ at k = 500 is due to the C, servo system limitation. The command C, changes

so rapidly that the C, servo does not follow the command perfectly.
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x = 50 (1-DOF)
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Figure 5.7: 1-DOF (@) set-point tracking (Experiment), x = 50

[« [ s Jopeak| Ao | Cy |
50 ]| 0.0179 | 18.38° | 5.681° | 0.0059
500 || 0.0147 | 14.37° | 4.343° | 0.0546

Table 5.2: Summary of 1-DOF experimental results

Experimental Results

The nonlinear controller is implemented in a C program on a PC. Equation (5.11) is solved
for C, at every time step (150Hz). Figure 5.7 and Figure 5.8 present experimental results,
and the summary of the experimental results is shown in Table 5.2.

Figure 5.7 shows a result with x = 50. ¢ initially moves in the opposite direction and
then achieves the commanded value (10°) without steady state bias with small C, both

in transient and steady state. (The maximum |C),| in the transient is about 0.01 and the
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k = 500 (Bang-Bang Control)

T
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Figure 5.8: 1-DOF (¢) set-point tracking (Experiment), x = 500 (Bang-Bang)

average value in the steady state is about 0.006.) Also, s is contained in a small bound (As
= 0.0179) . The spikes in C, do not result from the commanded C, but are an artifact of
the valve hardware. The bound of ¢ (A¢ = 5.68°) at the steady state (after about 1 second)
is larger than the bound (A¢ = 4.34°) in Figure 5.8 which shows a result with £ = 500
(Bang-Bang control). The Bang-Bang control achieves the same set point without steady
state error, and s is contained in a smaller bound (As = 0.0147). However, the control
“effort (C,) with the Bang-Bang control is much larger (|Cy| = 0.05). (The |Cyl = 0.05
is used because the roll moment corresponding to the C,, = 0.05 is positive for all ¢ and
C, = —0.05 generates negative roll moment for all ¢.)

By comparing the two experimental results, the same trend occurring in the simulation
is observed. As k becomes large, the bound of s decreases and the response of ¢ becomes

closer to that of the virtual control but the control effort becomes large. In this way, the
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performance and the control efforts can be explicitly traded-off in practice by adjusting the

design parameter x.

5.2.3 Summary of 1-DOF cases

The nonlinear control approach has been applied to 1-DOF roll angle set-point tracking.
The 1-DOF system is linear except in the highly nonlinear static roll moment characteristics.
It has been shown that both simulations and experiments results have the same trend that
increasing x results in better performance and larger control effort (C,). This trend is
predicted by the theory in Chapter 4. Therefore, the performance and the control effort
can be traded-off by adjusting the design parameter (k). Also, when a very large & is used,
the control structure becomes a conventional Bang-Bang control and the performance of
the conventional Bang-Bang control can be recovered as a special case. The results show

that the nonlinear control approach can make use of FTB effectively.

5.3 2-DOF (¢ and v)

Results of stabilization with one input (C,) and set-point tracking with two inputs (blowing,
C, and flaperon, d;) are provided. In stabilization with one input, simulation results are
provided assuming the active torque cancellation is perfect. (The active torque cancellation
is described in Appendix B.) In set-point tracking with two inputs, experimental results are

given with the active torque cancellation working.

5.3.1 Stabilization

Stabilization of the 2-DOF system with only C), is discussed. In this case, while the dimen-
sion of m is two, the number of the inputs is one. Therefore, a scalar Lyapunov function
(Vs = %STPSS) is used in High-Gain Lyapunov control (Refer to Section 4.2.3.). As noted
above, since the active torque cancellation is assumed perfect, I4 = 0,my = m,, = 0 are
used in the system equations ((3.1), (3.2)). An open-loop response of the 2-DOF system
under these conditions is shown in Figure 5.9. Obviously the open-loop system is unstable.

In particular, v diverges quickly.
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Open-loop response (2-DOF)
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Figure 5.9: Open-loop response (2-DOF)

Virtual Control

A PD controller in the following form is considered.
k(z) = —(Kpq + Kag)

where K, + KZ >0,Kq+ I\"g > 0.

0.16

0.18

0.2

(5.20)

K, and Ky selection: Any K,+ KPT > 0 and I\"d-f-Kg > 0 can stabilize the system, because

the svstem is a rigid body [42]. However, the performance changes with the choice of the

gains. Therefore, suitable choice of these gains is important. One approach is to optimize

the performance of the PD controller using convex optimization. Since the constraints

vI\"p—i-I\";;r > 0, Kd-I-Kg > 0 are Linear Matrix Inequalities (LMI) (therefore, convex), convex

optimization techniques are applicable if the objectives are convex. Since it is impossible,
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however, to handle the nonlinear dynamics directly, the optimization can be performed
over a set of N linearized operating points. That is, the system can be approximated as a

collection of linear systems:
i‘:Aix-i-B,'mv,(i:l,?,---,N) (5.21)
For this collection of linear systems, we consider a single Lyapunov function,
7 1 TH-1 T
1 :_2_:1“ Qz z, szQ;p >0

After proper scaling, the condition number (8) of Q. is minimized, which represents the
peaking factor. Peaking factor is defined as the ratio of the norm between the initial states
and the farthest point of the trajectory from the origin. In other words, it gives a bound
on how far any trajectory can wander relative to how far it was when it started, before

converging back to the origin.

min i)
subject to  Qu(A; — BiK)T + (Ai — BiK2)Qr + 20.Qz < 0,(i=1,2,--+, N)
K, =[K, K4}
Kp+KI>0
Ki+KI>0
1<Q.=QF < pI
Imoll2 < 1, Vllz(0)fl2 < 1

This is not an LMI in Q, and K, but is a Bilinear Matrix Inequality (BMI). However, with
a change of variables (Y = K;Q;), this BMI can be converted to an LMI [3].

min Jé}
subject;to QAT + AiQz +2a,Q, - BiYY - YTBf <0,(i=1,2,---,N)
I1<Q.=QT <pI

- }/T
« >0
Y u?l
With Q,, K. is computed from K; = YQ:! and K, and Kg are obtained from K, =
[K, Kgq]. If K, + KPT > 0 and Ky + KdT > 0 are not satisfied, oy and/or u need to be
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relaxed. (@, needs to be decreased to allow for slower convergence, and u needs to be
increased to permit larger inputs.) The control parameters used in the 2-DOF stabilization
are:

ar = 2.0,
pw=20.1

a; = 2.0 is chosen as 1/10 of the bandwidth of the flaperon servo control in order to avoid
interference between the dynamics of the flaperon servo control and the motion control.
The time constant corresponding to o is 0.5 seconds. This is an adequate number for the
motion of the wind tunnel model. p = 0.1 is determined as a result of iterations to make
sure that the levels of the moment required from the virtual control do not exceed available
moment.

The resulting parameters are:

2.1323  0.0000 —1.5590 0.0000
0, = 0.0000 3.0992 0.0000 —1.8975 50
’ —1.5590 0.0000 3.3619 —0.0000

0.0000 -1.8975 0.0000 2.7152

K 0.0037 0.0000 K 0.0003 0.0000
p, = , Kg=
P 0.0000 0.0355 0.0000 0.0055

The gains (K,, Kg) are diagonal. This is not surprising, because the inertia properties of
the model (I, = 0 and I, =~ I,) make the rigid body dynamics diagonal (Refer to (3.8)).
Furthermore, all the nonlinear terms in (3.8) are very small due to the second property
(I, = I.). This means that the rigid body dynamics is comprised of two independent LTI
systems (¢ and ). The initial response of the virtual control is shown in Figure 5.10. Both
roll and “yaw” angles converge to the origin as designed. The levels of both roll moment
(m;) and “yaw” moment (m;) are adequate in a sense that these moments are available

from both actuations (C, and dy).
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Virtual control
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Figure 5.10: Virtual control (2-DOF stabilization)

High-Gain Lyapunov Control

The control input (C,) is determined from (5.14). The parameters in (5.14) are as follows:

The scalar decay rate (as) of ||s||2 is set to
as = 10.0,

which is about 5 times faster than the virtual closed loop for the rigid body dynamics.

10
P, = :
{0 0.01}

Lvapunov matrix P; is chosen as
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Stabilization - constant bias
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Figure 5.11: 2-DOF Stabilization (Simulation, bias error)

P, is chosen so that P, s? and P;,,s? are of the same order. This is done because |m)|max/ Iz
and |m2|max/I. are comparable and I, is about 1/10 of I,. Therefore, the effect of m; on
the motion (the acceleration) is 1/10 of m;. Therefore, s;(= m; — k(z);) and 1/10 of
s2(= my — k(z)2) have the same level of impact on the motion. The design parameters are
thus given as

k1 = 50.0, Ky = 100.0.

i1 0
K,=p | ™ (5.22)
0 2%
Simulation Results
First, shown in Figure 5.11 is a result with constant bias error in C, (6C, = -0.001

corresponding to ém, =~ 80 % of full range at maximum). Second, a result with a periodic
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Stabilization - periodic disturbance
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Figure 5.12: 2-DOF Stabilization (Simulation, periodic disturbance)

disturbance (6C, = 0.001sin(27 - 5t)) in C, is shown in Figure 5.12. In both cases, it
is seen that despite large errors between the actual moment characteristics and nominal
moment characteristics due to the errors, the system is stabilized with a small amount of
blowing.” Also, each component of s converges to a small number quicker than both ¢ and
~. In Figure 5.12, it is observed that the periodic disturbance is effectively rejected. Overall
responses of both ¢ and v are similar to the bias error case.

Only C, is used as a control effector so far. In the next section, two inputs (blowing,

C, and flaperon, &;) are used to achieve set-point tracking of the FTB system.
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5.3.2 Set-Point Tracking

Set-Point Tracking of the 2-DOF system with FTB and flaperons is discussed. In this case,
the number of the inputs (= 2) are equal to the dimension of m (= 2). Therefore, a vector

‘Lyapunov function is employed.

Virtual Control

~ PID control for rigid body dynamical systems gives semi-globally stabilizing control due to
the passive nature of the rigid body [2]. As stated in the previous section, the rigid body
dynamics of the FTB system is basically decomposed into two independent LTI systems.
Therefore, the virtual control for set-point point tracking is designed with simple pole
assignment for each LTI system. The control parameters uséd in the 2-DOF set-point

tracking are

. 0.0206 0 . 00419 0 i 0.0027 0
Ky = Ki= Ka=
0  0.4164 0  0.4854 0  0.1364

The step response of the virtual control is shown in Figure 5.13. Both roll and “yaw” angles
achieve the set points (¢ = 20°, v = 10°). Levels of both roll moment (m;) and “yaw”

moment (m) are also within actuator capability.

High-Gain Lyapunov Control

Each of the decay rates of s;, i = 1,2 is set to 10, which is about 10 times faster than the
virtual closed loop for the rigid body dynamics. Thus, the vector of desired decay rates is
simply

as = [10 10)7.

Experimental Results

2-DOF set-point tracking experiments are conducted at a 100Hz sampling rate. The results
are shown in Figure 5.14 and Figure 5.15. Figure 5.14 shows the data when & is relatively
small

k = [40 140]7.
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Virtual control
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Figure 5.13: Virtual control (2-DOF set-point tracking)

Figure 5.15 represents a case where £ is K = [400 14OO]TA. At this level &, the control

structure behaves like a conventional Bang-Bang control
x = [400 1400]T.

In Figure 5.14, it is seen that the set-points (¢ = 20°,7 = 10°) are achieved with smaller
air usage (The average C,=0.01in t € [0 5]) than in Figure 5.15 (The average C,=0.029 in
t € [0 5]). Each component of s rapidly converges to within a small bound as depicted in
Figure 5.14, while each component of s is contained in a small bound in Figure 5.15. The
bounds of both ¢ (Aé = 5.1°) and v (Ay = 1.7°) in the steady state in Figure 5.14 are
degraded compared to the result of the Bang-Bang control (A¢ = 2.5°, Ay = 2.1°). Also,
note that the flaperons move very rapidly in order to cancel the roll moment generated by

the small levels of blowing. The roll moment in the small levels of blowing is large and
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K = [40 140]

0 0.5 1

time(sec)

Figure 5.14: 2-DOF set-point tracking (Experiment), & = {40 140]

rapidly changing with C, (Section 3.3). On the other hand, the flaperons in the Bang-Bang
control do not move rapidly due to the benign roll moment characteristics in the large levels
of blowing. By comparing the two cases shown above, it is observed that with the smaller
x, the amount of air usage is reduced to about 1/3 while the bound of the controlled output

is increased by a factor of two.

5.3.3 Summary of 2-DOF cases

For the stabilization of the 2-DOF system, simulations have been conducted under the as-
sumption that the active torque cancellation (Appendix B) works perfectly. It has been
shown that the 2-DOF system can be stabilized with small levels of blowing, i.e.,the effec-

tiveness of the FTB has been fully exploited.
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Figure 5.15: 2-DOF set-point tracking (Experiment), x = [400 1400] (Bang-Bang)

Experimental results in set-point tracking of the 2-DOI" system with 2 inputs are pro-
vided. Again. it is observed that the nonlinear control approach makes it possible to exploit
the effectiveness of small levels of FTB. As compared to a conventional Bang-Bang con-
trol. the air consumption reduces to about 1/3 while the bound of the controlled output
is increased by a factor of two. In this case, C, is used to control the “yaw” motion. As
seen, for example, in Figure 3.1, the “yaw” moment characteristics is less highly nonlinear
conlpafed to the roll moment. That is, in order to obtain a large “yaw” moment, a large
C is necessary. Therefore, the reduction in C, is not as significant as in the 1-DOF roll
case. However, according to a feasibility study of FTB [28], C,, = 0.01 roughly corresponds
to the maximum available normal bleed air from the engines. Therefore, the reduction in

C, from 0.03 to 0.01 is significant in this case.
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5.4 Summary

The control approach developed in the previous chapter is applied to thé FTB system in
three configurations. In all cases, it has been shown that the nonlinear control approach
can stabilize the FTB system and/or achieve the set points with small levels of blowing.
However, the performance with the small usage of air is degraded compared to the conven-,
tional Bang-Bang control, which is a special case for the nonlinear control in the sense that
the control structure becomes Bang-Bang control with large control parameters (x or Kj).
Therefore, when the amount of air is very expensive and the degradation in performance
can be tolerated, small parameters can be used to reduce the air usage. On the other hand,
when the air usage is not expensive and the performance is critical, the Bang-Bang control
should be used. In this way, the nonlinear control approach allows the trade-off between

the performance and the control effort by tuning design parameters.




Chapter 6

Conclusions

In this final chapter, the results of this research are summarized and the main contributions

are described. Also included are recommendations for future research.

6.1 Summary

This dissertation is on the development and experimental demonstration of a nonlinear
approach to developing control laws for a class of uncertain nonlinear systems represented
by a cascade connection of a nonlinear dynamical system and an uncertain linear dynamical
svstem. The class of systems is motivated by an aircraft dynamics at high angles of attack
incorporating Forebody Tangential Blowing (FTB).

FTB has been shown to be a very powerful means of generating forces and moments
on aircraft operating in flight regimes where the effectiveness of conventional aerodynamic
surfaces is reduced (e.g. post stall). Consequently, it provides a mechanism that could
greatly expand the flight envelope of future aircraft systems.

The approach to control design developed in this thesis makes it possible for the first time
to greatly reduce the amount of blowing required to control an aircraft model incorporating
FTB.

The nonlinear control approach is based on combining High-Gain Control (HGC) and
Lvapunov techniques. The structure of the control is similar to the standard successive loop
closure. It can robustly invert highly nonlinear uncertain characteristics. The resulting
control allows the system to operate in a region where characteristics are highly nonlinear

and uncertain.

86
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The design steps consist of three simple steps, and do not require information on the
upper bounds of uncertainties in order to guarantee the stability of the system (boundedness
of the states). If the information is available, the control parameters could be computed «
priori that guarantee the required performance;

Also, a full dimensional Lyapunov function is not required to generate the control law.
Only a low dimensional quadratic Lyapunov function is used. Therefore, the difficult pro-
cess of finding a full dimensional Lyapunov function can be avoided. Further, this feature
facilitates the real-time implementation of the control.

The nonlinear control design was applied to an aircraft model with FTB. Three configu-
rations of the FTB system are used to demonstrate the utility of the approach. Simulation
and experimental results were provided that showed the effectiveness of the approach. By
successfully inverting the highly nonlinear and uncertain characteristics of FTB, the control
allowed the FTB system to operate at low levels of blowing where FTB is powerful but
highly nonlinear and uncertain. The design approach was shown to be able to fully exploit
the FTB efficiency.

6.2 Conclusions and Contributions

The main contributions that became apparent in the course of the research are presented

below.

Developmert of Nonlinear Control Design: A nonlinear control approach is devel-
oped that robustly controls a class of uncertain nonlinear systems. It has the following

features:

e [t is applicable to a class of nonlinear systems represented by a cascade connection

of a nonlinear dynamical system and an uncertain linear dynamical system.
e It robustly inverts uncertain static nonlinearities.

e It consists of a few simple steps that allow two time-scale design. Virtual control,
reduced order observer and High-Gain Lyapunov control comprise the proce-
dures. The time-scale of each step can be specified so that time-scale separation

can be introduced artificially.
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e It does not require information on the bound of the uncertainties. If the informa-
tion on the bounds is available, the design parameters can be computed a priori

that guarantee the required performance.

e It requires only a low dimensional Lyapunov function. This not only simplifies

the control design process, hut also makes the real-time implementation feasible.

o It allows an explicit trade-off between the performance and the control effort
by simply increasing or decreasing the design parameters while preserving the
stability. Large design parameters yield a conventional Bang-Bang control struc-

ture.

Application to FTB: The control approach has been applied to the FTB system to ex-
ploit fully FTB efficiency. The highly nonlinear but powerful characteristics of FTB

are exploited to achieve an effective use of FTB.

Experimental Demonstration: Independent set-point tracking control of 2-DOF system
(roll and yaw angles) with FTB and flaperons at 45 degrees of nominal incidence has

been successfully demonstrated experimentally.

e Air usage is reduced to about 1/3 while the bound of the controlled output

increases by a factor of two compared to a conventional Bang-Bang control.

6.3 Recommendations
The following list describes recommendations for future study.

Increase of DOF: All the simulations and experiments are at most 2-DOF in this re-
search. Actual aircraft are 6-DOF systems and FTB generates not only roll/yaw
moment but also pitch moment, axial, side and normal forces. Investigation into mul-
tiple degrees of freedom is an interesting area of research. With the added complexity,
new approaches such as neural networks may be necessary for finding the amount of
blowing for stability/performance requirements. Also, interaction with existing con-

trol surfaces such as flaperons/elevators needs to be addressed.

Adaptive Scheme for x The nonlinear control design proposed in this work can allow

- explicit trade-off between the performance and the control efforts while preserving
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the stability. For all positive high-gain design parameter (k). the system is stable and
k determines the trade-off. In this work, « is tuned and fixed thereafter. However, &
can be determined adaptively. In this case, since an additional loop for determining

x will be closed, the stability property needs reevaluation.

Flexible Aircraft Dynamics Actual moments acting on th. aircraft model are estimated
from equations-of-motion in this research. This is possible because the aircraft model
is assumed rigid. However, in the case of flexible systems, this method is not appli-
cable. More complicated estimation methods such as neural networks are required.
Also, the stability proof relies on the condition that g(z) is affinely bounded. Flexible

systems do not necessarily satisfy this condition.

Multiple Sources of Uncertainties Basically, in this work uncertainties are matched,
i.e., the uncertain static moments are matched with respect to the known manipulat-
able nominal static moments. If there exist large uncertainties such as parametric ones
in the vehicle dynamics, those uncertainties are no longer matched with respect to the
manipulatable input. In this case, a more complex approach such as backstepping is

necessary.




Appendix A
Model Properties

The dimensions and mass/inertia properties of the wind tunnel model are summarized in this

Appendix. Also included is the physical parameters used in simulations and experiments.

A.1 Dimensions

The detailed dimensions of the wind tunnel model used in the experiments are shown in
Figure A.1. The forebody portion of the model is the same one used in [34]. Refer to the
reference for more information on the blowing slots. The nose tip radius, which affects the
FTB characteristics significantly is 0.01 in and the fineness ratio is 1.98 [8].

Relevant geometric characteristics of the model are summarized in Table A.1.

Characteristics Value
Conical forebody semi-apex angle | 14 deg
Wing leading edge sweep angle 70 deg
Wing span, b 5.80 in
Wing planform area Sye; - 2311 in*
Wing aspect ratio AR 1.46
Mean aerodynamic chord, M AC 5.31in
Tunnel blockage for ag=45 degrees | 7 %
Tunnel blockage for ag=90 degrees | 10 %

Table A.1: Geometric characteristics of the wing tunnel model

90
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Figure A.1: Wind tunnel model - 3 view

A.2 Mass/Inertia Properties

The mass and inertia properties are list in Table A.2. The inertia of the model with respect
to the orthonormal frame of reference with the origin of the center of mass were determined
experimentally using a torsional pendulum [25]. The values of inertia about the point P are

also included. The latter is used for the development of the equations of motion.

A.3 Other Parameters

- Other physical parameters used in simulations and experiments are summarized in Table

A3.
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Ine:-tia Component Origin of Reference Frame
kg, kgm? Point P Center of mass

I, (3.5620 £ 0.29) x 10~7 | (3.5620 £ 0.29) x 10~ *
I, (3.7067 £ 0.05) x 10~3 | (3.3782% 0.03) x 10~°
I, (3.9531 =+ 0.05) x 1073 | (3.6246 £ 0.03) x 10>
Toy 0.0 0.0

I, 0.0 0.0

I, ~ 0.0 = 0.0

mass | 0.8027 = 0.0001 ]

Table A.2: Mass/Inertia Properties of the wind tunnel model

Parameters | Value

Voo 24.5 (m/s)

I4 0.1772 (kgm?)

cf 1.54 x10~° (Nm/s)
cra 1.10 x10~% (Nm/s)
T 0.0200 (s)

To 0.0183 (s)

Table A.3: Other physical parameters




Appendix B

Active Torque Cancellation

‘Active torque cancellation (ATC) eliminates the effect of the gravity torque and reduces the
effect of the large moment of inertia of the apparatus so that the motion of the aircraft model
is dominated by aerodynamic loads. However, it does not try to eliminate the entire inertia
of the supporting system (only 90 %) because the high accuracy for all the measurements
and a very high bandwidth for the torque control are required and these are difficult -to

achieve.

B.1 Hardware

Figure B.1 shows the schematic of ATC. The servo motor attached to the “yaw” shaft
provides the torque for ATC that eliminates the effect of the gravity torque (m,) and
reduces the effect of the large moment of inertia of the apparatus so that the motion of the
aircraft model is dominated by aerodynamic loads (m). The torque sensor [33] sends out
the motor torque (m,,) applied from the motor to the “yaw” shaft. The command torque
(mm,.) to the motor is computed from + and 4. The torque loop is formed to track the

command torque using the feedback from the torque sensor. (Figure B.2)

B.2 Inertia cancellation

For simplicity, a case where ¢ = 0, my = 0 and my, = 0in (3.2) is considered. (3.2) reduces
to

(Ia+ )7 = ma + mn, (B.1)

93
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\ O

Torque sensor —

Dell 310

Figure B.1: Hardware of Active Torque Cancellation

kgsin ¥ ——l m, — :
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(1-8I1, }— > Pass +| Torque Control M, 5 1 L
A
Filter I+ 1
mn ——

Figure B..2: Block Diagram of Active Cancellation
Ideally, ATC should instantly apply the torque equal to
M = 14% (B.2)
so that the resulting motion of the model is governed by the aerodynamic moment only,
L5 = ma. (B.3)

However, it is impossible to apply the required torque in (B.2) instantaneously due to the
limited bandwidth of ATC. The limitation of ATC stems from the limited bandwidth of the
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Figure B.3: Torque Command

torque control and the low pass filter required for cleaning noise-contaminated acceleration

signal (%), from which the command torque is computed.

B.2.1 Bandwidth of ATC

A first-order lag (7.) from the command torque to the actual torque applied from the motor
is considered. The bandwidth of ATC is

(BW)arc ~ .Tl_ (B.4)

C

This is a lumped lag that includes the effect of the low-pass filter for ¥ and ile limited
bandwidth of the torque control (Figure B.3). Let & be the ratio of the inertia of the
apparatus left uncanceled. (=0 means that the all inertia is cancelled.) The actual torque

applied from the motor is expressed as follows:

1
14 7.8

mpy, =

Mo (B.5)

where

M, = (1 - §)14%. (B.6)
Substituting (B.5) and (B.6) into (B.1) gives the equations

YaTrc 1

3 - E+Tes
Yideal 1+ V—H-Tcs
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_£ 1

1 I/(l g) S .’ (BS)
14+v (1+1/)(1+V§)1+1+li57¢s
where

I 0.1772 .

g I, 39531x103  ° (B-9)
. m

Yideal = —1—2- (B.10)

z

From (B.8), the bandwidth of the acceleration due to ATC (Y47¢) is approximately obtained

as
14+ v€

(BW)5 47 = T (BW)arc, (B.11)

since ﬁl_—u term is very small (= 0.02)). In order to show that cancelling all the inertia of

the supporting system is not feasible, let £ be set to zero in (B.11). Then, we obtain

-1
(BW)5 pe = m(BVV)ATC ~ 0.02 (BW)atc- (B.12)

This implies that the bandwidth of the acceleration due to ATC (§4r1c¢) is about 1/50 of the
bandwidth of ATC. A normalized step response (%ﬁ{f{) is plotted as a solid line for £ = 0 in
Figure B.4 when the bandwidth of ATC is 10 (Hz) (= 60 (rad/s)). It is observed that the
response is so slow that it will interfere with the motion control with the bandwidth of 1.2
(rad/s). (The bandwidth of the motion control is set around 1.2 rad/s (Chapter 5).) From
the figure, it is concluded that even with the very fast ATC (time constant = 0.02 sec.),
the acceleration due to ATC can be very slow (time constant = 1.0 sec.) due to the large
inertia ratio (v). This is problematic because the motion due to ATC should not interfere
with the motion due to aerodvnamics. ATC should work very quickly so that the motion
is dominated by aerodynamic loads. The acceleration due to ATC should be at least five
times faster than the bandwidth of the motion control so that the motion control can be
designed on the basis of the frequency separation. This means that ATC should work much
faster than the motion control. The bandwidth of ATC should be

(BW) arc = 50 x 5 X (BW )motion control = 300 (rad/s) (B.13)
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Figure B.4: Normalized step response of v

This level of high bandwidth of ATC is difficult to achieve because of the noise in ¥ signal
and the limited bandwidth of the torque control. Therefore, cancelling all the inertia of the

supporting svstem is not feasible.
4 signal
From (B.6), the command torque error due to the error in ¥ signal is expressed as

dmy, = (1 —&)146%. (B.14)

This error should be smaller than the aerodvnamic moment in the frequency range of
interest. Otherwise, the motion is disturbed by the torque originating from the error in %

signal. The error should be less than 1/10 of the available aerodynamic moment, ¢.e.,

(1= €)1485 < 0.1 x 0.25 (Nm) (B.15)
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Figure B.5: “yaw” moment v.s. Cy, 7 (¢ = 0°,d5 = 0°)

0.25 (Nm) is the maximum “yaw” moment due to FTB as shown in Figure B.5. Therefore,

8% needs to satisfy

1
ol < 0025 r—gr (B.16)
~ 0.141 —1i€ (B.17)

in the frequency range of interest. If £ is set to zero, the following needs to hold up to 300
(rad/s) (From (B.13)):
|6%] < 0.141 (rad/s?). (B.18)

Figure B.6 shows the ¥ signal filtered with 300 and 60 rad/s cut-off frequency when = axis
is clamped at about -0.8°. With a low pass filter (LPF) of 300 rad/s cut-off, the error in %
signal reaches 4 rad/s, which is about 30 times larger than the requirement of 0.141 rad/s.
In order to achieve the high level of accuracy ( 0.141 rad/?) for % signal, an LPF of about

60 rad/s cut-off is required (assuming that € is small enough that the requirement of 0.141




APPENDIX B. ACTIVE TORQUE CANCELLATION 99

time (sec)

Figure B.6: Filtered v

(rad/s?) will not change significantly.). With an LPF of 60 rad/s cut-off, the noise reduces

significantly: the magnitude is thus
|6%| = 0.2 (rad/s?). (B.19)
This LPF is a part of the lag of ATC (Figure B.3):
(BW)arc < 60rad/s. (B.20)

Figure B.7 shows the power spectrum of the ¥ signal. From the power spectrum, it is
observed that the noise power is strong bevond 100 rad/s. The low frequency (less than
300 rad/s) contents of the noise come mainly from the vibration of the wind tunnel. This
is difficult to reduce under the existing facility. Thus, an LPF with cut-off around 60 rad/s

is required to clean the signal.
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Figure B.7: Power spectrum of ¥ signal

Torque control

A normalized open-loop Bode plot from the torque motor driver to the torque sensor is
depicted in Figure B.8. The plot is obtained by applying Pseudo Random Binary Signal [14]
to the torque motor driver. It-can be seen that up to 200 rad/s, the gain is flat and the
peek is about 20 dB. Therefore, the torque control that achieves the bandwidth of about
60 rad/s can be designed with a pure integrator compensation. The step response to 0.5
(Nm) command of the resulting dosed-loop (Figure B.9) is shown in Figure B.10. The

time-constant is about 0.015 sec and it corresponds to 66 rad/s bandwidth.

B.2.2 Selection of ¢

Since the bandwidth of ATC is limited to about 60 rad/s. Cancelling the all inertia of
the supporting system is not feasible. Shown in the following discussion is what percent of

the supporting svstem can be uncanceled given the limited bandwidth of ATC, so that the
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Figure B.8: Open-loop Bode plot of the torque characteristic

Mg x K NSV
P ,

Y

&

Figure B.9: Block Diagram of Torque Control

motion control design (e.g. v control) with ATC working can be designed on the basis of

the frequency separation. The requirements for the bandwidths are as follows:

(BW)3,7c = 6.0rad/s (B.21)
(BW)arc =~ 60.0rad/s (B.22)
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Torque Control Performance
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Figure B.10: Step response of torque control

where (BW)5,,. = 6.0 comes from the requirement that the bandwidth of the acceleration
due to AT? is at least 5 times that of the motion control. (BW)arc = 60.0 is from the
limited handwidth of ATC mainly from LPF requirement for cleaning the ¥ signal. £ can
be solved from (B.11) as

(BW)

So_HATC 1) /p & 0.1 (B.23)

¢=(1+y) (BW) arc

With € = 0.1, a normalized step response (3—-“;&%) is plotted in Figure B.4 as a dashed line

when the bandwidth of ATC is = 60 (rad/s). The level of the acceleration is small but the
response is much faster than the case for £ = 0.0 and the interference of the motion control

with the bandwidth of 1.2 (rad/s) can be avoided.
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Figure B.11: Gravity torque

'B.3 Gravity torque cancellation

Gravity restoring torque can be exnressed as
mg = —kgsin(y) ' (B.24)

where k, can be determined from the total mass and the arm length from the center of
mass to the “yaw” axis. However, k, is determined from the experimental data using a
least squares method because information such as mass and arm lengths are not exactly
known. In Figure B.11, the comparison between data and the curve fit result is presented.

The spring constant kg is calculated as
kg = 3.56 (Nm). (B.25)

Note that the bandwidth required for the inertia cancellation is sufficiently fast for the

gravity torque cancellation.
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